Actema: Integrating Graphical Proofs into I'TPs via Plugin-Driven

Gestural Interaction

Pablo Donato
D3S, Charles University
pablo.donato@tuta.io

Abstract

We present Actema, a graphical user interface for in-
teractive theorem proving that integrates with the Rocq
proof assistant through a client-server plugin architecture.
Actema enables users to construct formal proofs via di-
rect manipulation actions such as click and drag-and-drop
upon logical and mathematical expressions in the current
proof state, offering an expressive gestural language that
extends the Proof-by-Pointing paradigm introduced by
Bertot et al. in the 90s [2]. In particular, the semantics
of its drag-and-drop actions exploits recent advances in
deep inference proof theory to generalize the behavior of
traditional apply and rewrite tactics [4].

Unlike previous browser-based interfaces such as js-
Coq [1], Actema is not a full IDE but an interactive
replacement for Rocq’s goal view. Figure [I] shows a
screenshot of the system in action. Its design emphasizes
the separation of interface and kernel responsibilities: a
JavaScript frontend for user interaction, an OCaml back-
end for proof processing, and an HTTP-based communi-
cation layer with a custom-made Rocq plugin. This mod-
ularity enables Actema to act as an enhanced proof view
for any existing or future IDE. While currently focused on
Rocq, the design makes it possible to integrate Actema
with any other goal-directed ITP, as long as it provides
a plugin implementing Actema’s interactive proving pro-
tocol. Our approach also differs from that of ProofWid-
gets [3], a framework which (unlike us) supports arbi-
trary user-programmed GUIs for domain-specific interac-
tive notations in the goal view, but is tightly coupled to
the Lean proof assistant.

To bridge the gap between the ITP’s internal logic and
Actema’s HOL-based engine, we introduce a translation
layer in the plugin. This layer compiles user gestures
performed in Actema’s interface into corresponding proof
tactics that can be executed to generate certified proof
terms, but also inlined to create a static proof script repre-
sentation of the user’s actions. By decoupling the graphi-
cal action trace from the tactic script, we stay agnostic to
the particular statement and proof languages of the ITP,
so that in principle it should be possible to reuse graphical
proofs in previously non-interoperable tools. Recorded
graphical traces could also be replayed dynamically in
Actema’s interface in order to review existing proofs, al-

Benjamin Werner
LIX, INRIA

benjamin.werner@inria.fr

though this feature is not yet implemented.

This architecture supports a hybrid workflow where
users can freely switch between textual and graphical
proof modes (see Fig. , letting them gradually opt into
either paradigm depending on their level of expertise. In
particular, beginners can start with the intuitive drag-
and-drop actions to learn how to build proofs, while ad-
vanced users can switch to textual mode for complex
domain-specific manipulations and automations.

We also reflect on the challenges of statically represent-
ing graphical actions in a durable, human-readable way.
Time-based proof visualization — where the evolution of
a proof is shown dynamically — is especially helpful for
understanding the reasoning process on a local scale, but
it is not best suited to grasp the higher-level structure
of a proof nor to support modification and maintenance
of existing proofs, i.e. proof evolution. We are currently
experimenting with the possibility of exploiting the un-
derlying structure of graphical traces to generate static
proof texts in (controlled) natural language, while also re-
searching proof-theoretic frameworks that could support
a more uniform representation of proof traces and proof
objects.

By integrating Actema with Rocq through a plugin-
driven architecture and focusing on direct manipulation,
we address key HATRA themes of human-centricity, ac-
cessibility, and modularity in proof engineering tools.
This work contributes to the HATRA agenda by demon-
strating how proof assistants can be extended with
human-centric interfaces grounded in a solid theoretical
model. We see Actema as a step toward more transparent
and embodied forms of formal reasoning.

References

[1] Emilio J. Gallego Arias, Benoit Pin, and Pierre Jou-
velot. jsCoq: Towards hybrid theorem proving in-
terfaces. Electronic Proceedings in Theoretical Com-
puter Science, 239:15-27, 2017. Available at: https:
//doi.org/10.4204/eptcs.239.2

[2] Yves Bertot, Gilles Kahn, and Laurent Théry. Proof
by pointing. In Theoretical Aspects of Computer Soft-

https://doi.org/10.4204/eptcs.239.2
https://doi.org/10.4204/eptcs.239.2

theories > fundamental-arithmetics > = ged.v

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
= 47
~ 48
49

Definition is_ged (d a binat) := (is_cd d a b)/\(forall (d':nat),(is_cd d' a b)->(div

Theorem gcd_unique : forall (d d' a b:nat),(is_gcd d a b)->(is_gcd d' a b)->d=d'.
unfold is gcd.
intros.
actema.
apply divides_antisym; [> apply H2; exact H3 []; apply H4; exact Hl1.
Undo. pose proof divides antisym.
Admitted.

Lemma gcd_sym : forall (d a b:nat),(is gcd d a b)->(is gcd d b a).
unfold is gcd.
intros.
actema “demo”.

Qed.

-

m Prove: Socrates:(), Human::(), Mortal::(); Human(Socrates), forall »

is_cd(d, b, a) divides(d, d)
=+ expr + hyp

Search lemma...

is_cd (d', b, a)
is_cd (d, a, b)

| Vd:N.is_cd(d' a, b) = divides (d, d') |

[=]c]

divides (d, d")

Figure 1: Developing proofs graphically within a textual setting. On the left, the usual interactive view of the proof
script, in the VsCoq IDE. On the right, the graphical proof view of Actema. Blue items correspond to hypotheses,
the red item corresponds to the conclusion, and tabs allow to switch focus between subgoals.

ware, pages 141-160. Springer, 1994. Available at:
https://doi.org/10.1007/3-540-57887-0_94

Edward Ayers, Mateja Jamnik, and W.T. Gowers. A
graphical user interface framework for formal verifi-
cation. In ITP 2021, LIPIcs, volume 193, pages 4:1—
4:16. Schloss Dagstuhl, 2021. Available at: https:
//doi.org/10.4230/LIPIcs.ITP.2021.4

Pablo Donato, Pierre-Yves Strub, and Benjamin
Werner. A drag-and-drop proof tactic. In Proceed-
ings of the 11th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs (CPP 2022),
pages 197-209. ACM, 2022. Available at: https:
//doi.org/10.1145/3497775.3503692

https://doi.org/10.1007/3-540-57887-0_94
https://doi.org/10.4230/LIPIcs.ITP.2021.4
https://doi.org/10.4230/LIPIcs.ITP.2021.4
https://doi.org/10.1145/3497775.3503692
https://doi.org/10.1145/3497775.3503692

