Deep Inference for Graphical Theorem Proving

Pablo Donato
2025-06-10

Grothendieck Institute

D3S seminar

Prague

Introduction

Mathematical logic Mathematicians & Logicians (1900-1930s)

xisA AllAareB A(x) VYy.A(y)= B(y)

w>

X is B B(x)

« Generic patterns of deduction as symbolic rules

Mathematical logic Mathematicians & Logicians (1900-1930s)

xisA AllAareB A(x) Vy.A(y)= B(y)

w>

X is B B(x)

« Generic patterns of deduction as symbolic rules

« Formalist school (Hilbert):

Maths as a huge game

Goal: to prove theorems by following inference rules

Mathematical logic Mathematicians & Logicians (1900-1930s)

xisA AllAareB A(x) Vy.A(y)= B(y)

w>

X is B B(x)

« Generic patterns of deduction as symbolic rules

« Formalist school (Hilbert):

Maths as a huge game

Goal: to prove theorems by following inference rules

 Proof theory: design & study of rule systems capturing maths

Curry-Howard correspondence Computer scientists & Logicians (1950-1960s)

xisof type A fisa function from A to B Fx:A +Ff:A—>B

~>

f(x)isof type B F f(x):B

« Generic patterns of computation as symbolic rules

- Constructivist school (Brouwer-Heyting-Kolmogorov):

Maths as a huge computation

Goal: to implement theorems by building programs

- Type theory: design & study of rule systems capturing (sound) programming

4

Proof assistants De Bruijn & Martin-L6f (1960-1970s)

Dream: a powerful language/software environment for both:

« formal mathematics
« verified programming

Proof assistants De Bruijn & Martin-L6f (1960-1970s)

Dream: a user-friendly, yet powerful language/software environment for both:

« formal mathematics
- verified programming

Problem: current interfaces (andincoming ones based on LLms) StUCK 1N textual and verbal form

Commands on Symbolic expressions

N\ 7

Proofs Statements

e o & o [£ Topos-Theory] B LN =]

GrothendieckTopos.lean X Y «© 0o ® 0 - Lean Infoview X
:e)eosTheory > = GrothendieckTopos.lean ¥ GrothendieckTopos.lean:144:4 = 1 0
131 noncomputable instance associatedFunctor_iso_sheafToPresheaf_obj_obj V¥ Tactic state € v Y
132 (F : Sheaf J (Type w)) (X : C°P) : 1 goal
133 ((associatedFunctor (yoneda » presheafToSheaf J (Type w))).obj F).obj X = ¢ Type w
134 ((sheafToPresheaf J (Type w)).obj F).obj X where) e
135 hom := ((sheafificationAdjunction J (Type w)).homEquiv (yoneda.obj X.unop) F).to ;n_.sté .thmad' kTg){ e
136 yonedaEquiv.toFun 2 S;Zafe;](-'T';peo\zt)) ogy
137 inv := yonedaEquiv invFun >) N) L X : Con
gg Honl](.r:\slhizf?fl by tac constructs a term of the expected type by running the tactic(s) tac . I f); (Zen(;t)la.obj (Opposite.unop X) - (sheafToPresheaf J (Type
140 inv_hom_id := by Wb z . . .
141 set f 1= ((sheafificationAdjunction J (Type w)).homEquiv (yoneda.obj X.unop) F X);(zrijh?ifI?i::::;igﬁsnXL;;ﬁ:iié:‘loge?:;z:]w;??gg;égﬁ;:mp
142 set g := ((sheafificationAdjunction J (Type w)).homEquiv (yoneda.obj X.unop) F eaera) (et 500 FoimvRn
143 let hom := yoneda.obj X.unop - (sheafToPresheaf J (Type w)).obj F . ((presheafTosheaf J (Type w)).obi (yoneda.obj (Opposite.uno
144 rw [« Category.assoc])g()) 5 FF)) . e ey &y At 1y Al
145 apply Eq.trans (b := (yonedaEquiv.invFun » f » g) » yonedaEquiv.toFun) e Re) (CRsies s 59) = (aeaiTaradamat o (Tyae
1:3 2:2: :: ;: ;:V:eiafegoiy;is?cdom = by w)).obj F) := ((sheafificationAdjunction J (Type w)).homEquiv
148 Tt e — (yoneda.obj (Opposite.unop X)) F).toFun
e rw leq] - = || hom : Type w := yoneda.obj (Opposite.unop X) - (sheafToPresheaf
150 rw[Category.comp_id] J (e W))'?bj _F ,
151 apply Equiv.self_comp symm + (yonedaEquiv.invFun » f) » g » yonedaEquiv.toFun = 1
B - - (((sheafToPresheaf J (Type w)).obj F).obj X)
153 noncomputable def natTrans_associatedFunctor_sheafToPresheaf : » All Messages (0) "
154 associatedFunctor (yoneda » presheafToSheaf J (Type w)) - sheafToPresheaf J (1
155 app F := { app := fun X => (associatedFunctor_iso_sheafToPresheaf_obj_obj J F X)
156 naturality := by
157 intros
158 apply funext
159 intro
160 unfold associatedFunctor_iso_sheafToPresheaf_obj_obj
161 simp only [Equiv.toFun_as_coe, types_comp_apply]
162 rw [yonedaEquiv_naturality']
163 simp only [EmbeddinglLike.apply_eq_iff_eql "
164 apply Adjunction.homEquiv_naturality_left

X §° subobject-classifier & 3¢ &Z<” Launchpad ® O0A 0 WO -- INSERT -- y Bordg, 2 monthsago @ A®%3 Ln144,Col5 Spaces:2 UTF-8 LF leand & %

Proof-by-Action

Solution: no-code interface for proof assistants

> more graphical and gestural paradigm

Direct manipulation of Formulas

- . 7 v
Proofs Statements
Mortal(Socrates)
+ expr + hyp
Socrates : () Y x : () . Human (x) = Mortal (x) Mortal (Socrates)

Human (Socrates)

Proof-by-Action

Solution: interface for proof assistants

> more graphical and gestural paradigm

Direct manipulation of Boxes

N’
A - 7

Proofs Statements

Proof-by-Action

Solution: no-code interface for proof assistants

> more graphical and gestural paradigm

Direct manipulation of Flowers &

- -

Proofs Statements

Symbolic Manipulations

A demo Is worth a thousand words!

« Fully graphical: no textual proof language

- Both spatial and temporal:

proof = gesture sequence

- Different modes of reasoning with a single “syntax”:

Technique Action Semantics Proof theory
Proof—by-Pomterg Click Intro/Elim Sequent calculus
(Bertot, Kahn, and Théry 1994)

Proof-by-Linking o .
(Chaudhuri 2013) Drag-and-Drop | Forward/Backward | Deep inference

lconic Manipulations

Classical Logic: Existential Graphs

Existential Graphs (Peirce, 1896)

Three diagrammatic proof systems for classical logic:

- Alpha: propositional logic
- Beta: first-order logic

- Gamma: higher-order and modal logics

11

Existential Graphs (Peirce, 1896)

Three diagrammatic proof systems for classical logic:

« Alpha: propositional logic
- Beta: first-order logic

- Gamma: higher-order and modal logics

11

The three icons of Alpha

« Sheet of assertion

» Juxtaposition

 Cut

12

The three icons of Alpha

« Sheet of assertion

> frue (no assertion)

» Juxtaposition

 Cut

12

The three icons of Alpha

« Sheet of assertion

> frue (no assertion)

» Juxtaposition

 Cut

12

The three icons of Alpha

« Sheet of assertion

> frue (no assertion)

a — a 1s true

» Juxtaposition

 Cut

12

The three icons of Alpha

« Sheet of assertion

> frue (no assertion)

a — a 1s true

» Juxtaposition

 Cut

12

The three icons of Alpha

« Sheet of assertion

> frue (no assertion)

a - a is true
» Juxtaposition
G H — G is true and H is true
« Cut

12

The three icons of Alpha

« Sheet of assertion

> frue (no assertion)

a - a is true
» Juxtaposition
G H — G is true and H is true
« Cut

12

The three icons of Alpha

« Sheet of assertion

> frue (no assertion)

a - a is true
» Juxtaposition
G H — G is true and H is true
« Cut

@ — G is not true

12

Relationship with formulas

T AAB —1A

1 AVB A=>B

13

ILlative transformations

Only 4 edition principles!

14

ILlative transformations

Only 4 principles!

Iteration (copy-paste)

14

ILlative transformations

Only 4 principles!

Iteration (copy-paste) Deiteration (unpaste)

14

ILlative transformations

Only 4 principles!

Iteration (copy-paste) Deiteration (unpaste) Insertion

14

ILlative transformations

Only 4 principles!

Iteration (copy-paste) Deiteration (unpaste) Insertion Deletion

-

14

ILlative transformations

Only 4 principles!

Iteration (copy-paste) Deiteration (unpaste) Insertion Deletion

-

and a principle, the Double-cut law:

QHG GHG

14

Example: modus ponens

15

Example: modus ponens

Deit
_> a

15

Example: modus ponens

Deit
_> a

Dcut

15

Example: modus ponens

Dcut Del
— a b — b

Deit
_> a

15

Intuitionistic Logic: Flowers

The scroll

| thought | ought to take the general form of argument as the

basal form of composition of signs in my diagrammatization;
0 and this necessarily took the form of a “scroll”, that is [...] a

curved line without contrary flexure and returning into itself
after once crossing itself.

— (Peirce 1906, pp. 533-534)

17

The scroll

| thought | ought to take the general form of argument as the
basal form of composition of signs in my diagrammatization;
and this necessarily took the form of a “scroll”, that is [...] a

curved line without contrary flexure and returning into itself
after once crossing itself.

— (Peirce 1906, pp. 533-534)

AANB=>CAD
- “conditional de inesse” = classical implication

17

The scroll

basal form of composition of signs in my diagrammatization;

and this necessarily took the form of a “scroll”, that is [...] a

curved line without contrary flexure and returning into itself
AANB=CAD after once crossing itself.

— (Peirce 1906, pp. 533-534)

0 | thought | ought to take the general form of argument as the

- “conditional de inesse” = classical implication

S scroll = two
“(AABA(CAD))

17

The scroll

| thought | ought to take the general form of argument as the

basal form of composition of signs in my diagrammatization;
and this necessarily took the form of a “scroll”, that is [...] a

curved line without contrary flexure and returning into itself
after once crossing itself.

AAB=CAD — (Peirce 1906, pp. 533-534)

- “conditional de inesse” = classical implication

S scroll = two

(A ABA=(C AD)) » Peirce also introduced = in logic! (Lewis 1920, p. 79)

17

The n-ary scroll (Oostra 2010)

18

The n-ary scroll (Oostra 2010)

Classical Classical

« @

bvVc a=>>b

18

The n-ary scroll (Oostra 2010)

Classical Classical

« @

bvc a=>bvcvdveVf a=b
n=>5

18

The n-ary scroll (Oostra 2010)

Intuitionistic Classical

-
00

« @

—|(—|b A\ —|C) a= b

18

The n-ary scroll (Oostra 2010)

Generalizes Peirce’s scroll

Intuitionistic Intuitionistic

« @

=i(mb A) a=>b —(a A 1b)

18

The n-ary scroll (Oostra 2010)

Generalizes Peirce’s scroll and cut

Intuitionistic Intuitionistic

« @

(=b A o) “aZa=> 1 =1(a A —b)

18

Blooming (Me, 2022)

19

Blooming

19

Blooming

Turn inloops into

19

Blooming

“Make love, not war”

19

https://en.wikipedia.org/wiki/Make_love,_not_war

The original “theorems” of geometry were those propositions that Euclid
proved, while the corollaries were simple deductions from the theorems
inserted by Euclid’s commentators and editors. They are said to have been
marked the figure of a little garland (or corolla), in the origin.

— Peirce, MS 514 (1909) (peirce 1976)

20

The original “theorems” of geometry were those propositions that Euclid
proved, while the corollaries were simple deductions from the theorems
inserted by Euclid’s commentators and editors. They are said to have been
marked the figure of a little garland (or corolla), in the origin.

— Peirce, MS 514 (1909) (peirce 1976)

Petals = (possible) corolla-ries of pistil!

20

Predicate Logic: Gardens

Lines of Identity

In Beta, quantifiers and variables are represented with

22

Lines of Identity

In Beta, quantifiers and variables are represented with

quantifier location = outermost point

22

Lines of Identity

In Beta, quantifiers and variables are represented with

P e———Q

Ix.P(x) A Q(x) Vx.R(x) = S(x)
graphs! = A3x.R(x) A S(X)

quantifier type = outermost point polarity

22

Lines of Identity

Problem: no De Morgan duality in logic

P e——0Q

Fx.P(x) A Q(x) Vx.R(x) = S(x)
graphs! 2 =3x.R(x) A 1S(x)

quantifier type = outermost point polarity

22

Intuitionistic quantification

Solution: interpretation

dx.P(x) A Q(x) Vx.R(x) = S(x)

3/V = inloop/outloop

23

Intuitionistic quantification

Solution: interpretation

—(dx.P(x) A Q(x)) —1(Vx.R(x) = S(x))

3/V = inloop/outloop

23

Intuitionistic quantification

Solution: polarity-invariant interpretation

dx.P(x) A Q(x) Vx.R(x)= S(x)

3/V = petal/pistil

23

Intuitionistic quantification

Solution: interpretation
C S
—1(3x.P(x) A Q(x)) —1(Vx.R(x) = S(x))

3/V = petal/pistil

23

Spaghetti statements

Problem: cables (well known in visual programming)

e EEEEEE—

(ﬁ: (‘;(: isanumber o, §<E v\:-\ N YON))

[These diagrams are] too cumbersome to recommend themselves as a prac-
tical notation.

— (Quine 1955, p. 70)

24

Solution: replace lines with good old binders and variables

dx.P(x) A Q(x) Vx.R(x) = S(x)
carden = content of an area (binders + flowers)

25

Reasoning with Flowers

Iteration and Deiteration

Justify a target by an identical source

e
CAGO

cross-pollination self-pollination
27

Iteration and Deiteration

Works at arbitrary depth!

Cross-pollination

28

Iteration and Deiteration

Works at arbitrary depth!

Cross-pollination

28

Iteration and Deiteration

Works at arbitrary depth!

Self-pollination

28

Iteration and Deiteration

Works at arbitrary depth!

Self-pollination

28

Insertion and Deletion

Split in two:
Flower Petal
grow a
AN aog e ﬁ glue
60 oy
¥ o ()
(XD

reading: conclusion — premiss

29

Intuitionistic restriction of double-cut principle:

epis
a —

30

Abstraction

(o)~ ()
o
ocorio. o
CONROO

32

Ex falso quodlibet

o
&

34

‘ ‘ epet
—

(X2

35

Metatheory: Nature vs. Culture

Natural rules #®

= (De)1terat10n U Instantiation U Scrollmg U QED U Case reasomng

N e\

{polll pollT} {ipis, lpet} N {epls} {epet} {srep}

37

Natural rules #®

= (De)1terat10n U Instantiation U Scrollmg U QED U Case reasomng

N e\

{polll pollT} {ipis, lpet} N {epls} {epet} {srep}

All rules are:

* Invertible: if ® — ¥ then ¥ equivalent to ®

37

Natural rules #®

= (De)1terat10n U Instantiation U Scrollmg U QED U Case reasomng

N e\

{polll pollT} {ipis, lpet} N {epls} {epet} {srep}

All rules are:
* Invertible: if ® — ¥ then ¥ equivalent to ®

> “Equational” reasoning

37

Natural rules #®

= (De)1terat10n U Instantiation U Scrollmg U QED U Case reasomng

N e\

{polll pollT} {ipis, lpet} N {epls} {epet} {srep}

All rules are:
* Invertible: if ® — ¥ then ¥ equivalent to ®
> “Equational” reasoning

 Analytic: if ® — ¥ and a occurs in ¥ then a occurs in @

37

Natural rules #®

= (De)1terat10n U Instantiation U Scrollmg U QED U Case reasomng

N e\

{polll pollT} {ipis, lpet} N {epls} {epet} {srep}

All rules are:

* Invertible: if ® — ¥ then ¥ equivalent to ®

> “Equational” reasoning

 Analytic: if ® — ¥ and a occurs in ¥ then a occurs in @

> Reduces proof-search space

37

Cultural rules <

< = Insertion U Deletion U Abstraction
- _/ N—— — — _/

{grow',glue} {crop,pull} {apis:apet}

38

Cultural rules <

< = Insertion U Deletion U Abstraction
- _/ N—— — — _/

{grow',glue} {crop,pull} {apis:apet}

« All rules are non-invertible

- Some rules are non-analytic

38

Cult-elimination

x
Theorem (Soundness): If ® - ¥ then ® = ¥ in every Kripke structure X.

39

Cult-elimination

x
Theorem (Soundness): If ® - ¥ then ® = ¥ in every Kripke structure X.

X &
Theorem (Completeness): If ® = W in every Kripke structure X, then ® + .

39

Cult-elimination

x
Theorem (Soundness): If ® - ¥ then ® = ¥ in every Kripke structure X.

X &
Theorem (Completeness): If ® = W in every Kripke structure X, then ® + .

&
Corollary (Admissibility of <): If ® - ¥ then @ - ¥.

39

Cult-elimination

x
Theorem (Soundness): If ® - ¥ then ® = ¥ in every Kripke structure X.

X &
Theorem (Completeness): If ® = W in every Kripke structure X, then ® + .

&
Corollary (Admissibility of <): If ® - ¥ then @ - ¥.

Completeness of fragment #!

S for proofs
39

The Flower Prover

A demo is worth a thousand pictures!

http://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover

Flower Prover

GUI in the Proof-by-Action paradigm based on the flower calculus

- Represent flowers as nested boxes

- Modal interface to interpret gestural actions:

Proof mode <= Natural (invertible and analytic) rules
Edit mode <= Cultural (non-invertible) rules

Navigation mode <= Contextual closure (functoriality)

42

Towards Curry-Howard

ldea: record every move with arrows

by

ldea: every move with arrows

bty

ldea: every move with arrows

bty

ldea: every move with arrows

bty

Scroll nets

ldea: every move with arrows

bty

Scroll nets

ldea: every move with arrows

bty

Scroll nets

ldea: every move with arrows

bty

Justifications

Iteration (copy-paste) Deiteration (unpaste) Insertion Deletion

45

Justifications

Iteration (copy-paste) Deiteration (unpaste) Insertion Deletion

45

Justifications

Iteration (copy-paste) Deiteration (unpaste) Insertion Deletion

45

Iteration (copy-paste)

Deiteration (unpaste)

Insertion

Deletion

Justifications

45

Iteration (copy-paste)

Deiteration (unpaste)

Insertion

Deletion

Justifications

45

Iteration (copy-paste)

Deiteration (unpaste)

Insertion

Deletion

Justifications

45

Iteration (copy-paste)

Deiteration (unpaste)

Insertion

Deletion

Justifications

45

Iteration (copy-paste)

Deiteration (unpaste)

Insertion

Deletion

Justifications

45

Iteration (copy-paste)

Deiteration (unpaste)

Insertion

Justifications

Deletion

45

Iteration (copy-paste)

Deiteration (unpaste)

Insertion

Justifications

Deletion

Structure of

, transformations determined by polarity

45

Interactions

Opening Closing

46

Interactions

Opening Closing

46

Interactions

Opening Closing

46

Interactions

Opening Closing

~ H - e EEsEEEEEsEEEEEEEEsssEEEEEEEEEEEe e e

46

Interactions

Opening Closing

~ H - e EEsEEEEEsEEEEEEEEsssEEEEEEEEEEEe e e

46

Simply-typed A-calculus

47

Simply-typed A-calculus

B
var

x:Af:A->BFf:A—>B

47

Simply-typed A-calculus

B A
var var

x:Af:A->BFf:A—>B x:Af:A->BFXx:A

47

Simply-typed A-calculus

var var B A
x:Af:A->BFf:A—>B x:A,f:A—>BI—x:Aapp

x:A f:A->BF(f)x:B

47

Simply-typed A-calculus

var var B A@
x:Af:A->BFf:A—>B x:A,f:A—>BI—x:Aapp

x:A f:A->BF(f)x:B

47

Simply-typed A-calculus

var var B A@
x:Af:A->BFf:A—>B x:A,f:A—>BI—x:Aapp

x:A f:A->BF(f)x:B

47

Simply-typed A-calculus

var var
x:Af:A->BFf:A—>B x:A,f:A—>BI—x:Aapp
x:A f:A->BF(f)x:B lam
x:AFAf.(f)x:(A—-> B)—> B B

47

Simply-typed A-calculus

var var
x:Af:A->BFf:A—>B x:A,f:A—>BI—x:Aapp

x:A f:A->BF(f)x:B
x:AFAf.(f)x:(A—-> B)—> B

lam

47

Simply-typed A-calculus

var var
x:Af:A->BFf:A—>B x:A,f:A—>BI—x:Aapp

x:A f:A->BF(f)x:B
x:AFAf.(f)x:(A—-> B)—> B

lam

47

Simply-typed A-calculus

var var
x:Af:A->BFf:A—>B x:A,f:A—>BI—x:Aapp

x:A f:A->BF(f)x:B
x:AFAf.(f)x:(A—-> B)—> B
FAxAf.(f)x:A—>(A—->B)—>B

lam

lam

47

Simply-typed A-calculus

var var
x:Af:A->BFf:A—>B x:A,f:A—>BI—x:Aapp

x:A f:A->BF(f)x:B
x:AFAf.(f)x:(A—-> B)—> B
FAxAf.(f)x:A—>(A—->B)—>B

lam

lam

47

Simply-typed A-calculus

var var
x:Af:A->BFf:A—>B x:A,f:A—>BI—x:Aapp

x:A f:A->BF(f)x:B
x:AFAf.(f)x:(A—-> B)—> B
FAxAf.(f)x:A—>(A—->B)—>B

lam

lam

47

Simulating 3-reduction

A

(Ax.(x,x)) y

48

Simulating 3-reduction

48

Simulating 3-reduction

48

Simulating 3-reduction

(Ax.(x,x)) y ¥,)

48

Function call vs. inlining

HFA—->(A—-> B)—>B HFA—-(A—-B)—>B
49

[TODO] Computational expressivity

 Propositional logic ~ non-recursive, pure functional programming:

» Functions (=)
» Non-recursive algebraic datatypes (A, V)

« Real-world progamming by encoding more expressive types:

» (Co)inductive types: (co)recursion

» Higher-order types: polymorphism

» Dependent types: type-level computation
» Modal types: (monadic) side-effects?

50

[TODO] Notational freedom

Logic is about abstract, generic interactions

> captures well (the structure of) general-purpose programming

51

[TODO] Notational freedom

Logic is about abstract, generic interactions

> captures well (the structure of) general-purpose programming

BUT (and contrary to popular belief)

most maths/programming is about concrete representations of the world!

> need for domain-specific interactive notations

51

Related works (non-exhaustive)

- Programming systems:

» Boxer (di Sessa 1994): building programs by manipulating
nested boxes

» Managed copy & paste (Edwards and Petricek 2022):
(de)iteration rules of EGs?

» Schema evolution (Edwards et al. 2024):

datatypes < logical statements

?
schema evolution « illative transformations

« Proof assistants:
» (Ayers 2021): Box datastructure similar to flowers

« Categorical logic:
» (Johnstone 2002): coherent/geometric sequents in topos theory
» (Bonchi et al. 2024): categorical algebra of Beta

52

Bibliography

Ayers, Edward W. 2021. “A Tool for Producing Verified, Explainable Proofs..”

Bertot, Yves, Gilles Kahn, and Laurent Thery. 1994. “Proof by Pointing”. Edited
by Masami Hagiya, John C. Mitchell, Gerhard Goos, and Juris Hartmanis.
Theoretical Aspects of Computer Software. Berlin, Heidelberg: Springer Berlin
Heidelberg. https://doi.org/10.1007/3-540-57887-0_94.

Bonchi, Filippo, Alessandro Di Giorgio, Nathan Haydon, and Pawel Sobocinski.
2024. “Diagrammatic Algebra of First Order Logic”. arXiv. January 2024. https://
doi.org/10.48550/arXiv.2401.07055.

Chaudhuri, Kaustuv. 2013. “Subformula Linking as an Interaction Method”. Edited
by Sandrine Blazy, Christine Paulin-Mohring, David Pichardie, David Hutchi-
son, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, et al.. Interactive Theorem

53

https://doi.org/10.1007/3-540-57887-0_94
https://doi.org/10.48550/arXiv.2401.07055

Proving. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.
1007/978-3-642-39634-2_28.

Edwards, Jonathan, and Tomas Petricek. 2022. “Interaction Vs. Abstraction: Man-
aged Copy and Paste”. In Proceedings of the 1st ACM SIGPLAN International
Workshop on Programming Abstractions and Interactive Notations, Tools, And

Environments, 11-19. Auckland New Zealand: ACM. https://doi.org/101145/
3563836.3568723.

Edwards, Jonathan, Tomas Petricek, Tijs Van Der Storm, and Geoffrey Litt. 2024.
“Schema Evolution in Interactive Programming Systems”. The Art, Science, And
Engineering of Programming 9 (1): 2. https://doi.org/10.22152/programming-
journal.org/2025/9/2.

53

https://doi.org/10.1007/978-3-642-39634-2_28
https://doi.org/10.1007/978-3-642-39634-2_28
https://doi.org/10.1145/3563836.3568723
https://doi.org/10.1145/3563836.3568723
https://doi.org/10.22152/programming-journal.org/2025/9/2
https://doi.org/10.22152/programming-journal.org/2025/9/2

Johnstone, Peter T. 2002. Sketches of an Elephant: A Topos Theory Compendium.
Vol. 2. Oxford Logic Guides. Oxford, England: Clarendon Press.

Lewis, C. I. 1920. “A Survey of Symbolic Logic”. Journal of Philosophy, Psychology
and Scientific Methods 17 (3): 78-79. https:/ /doi.org/10.2307/2940631.

Oostra, Arnold. 2010. Los Graficos Alfa De Peirce Aplicados a La Logica

Intuicionista. Cuadernos De Sistematica Peirceana. Centro de Sistematica
Peirceana.

Peirce, Charles Sanders. 1906. “Prolegomena to an Apology for Pragmaticism”. The
Monist 16 (4): 492-546. https:/ /www.jstor.org/stable/27899680.

Peirce, Charles Sanders. 1976. “Mathematical Miscellanea. 1”. Edited by Carolyn
Eisele. New Elements of Mathematics. De Gruyter.

53

https://doi.org/10.2307/2940631
https://www.jstor.org/stable/27899680

Quine, Willard Van Orman. 1955. Mathematical Logic. Harvard University Press.

Sessa, A. di. 1994, “Boxer Structures.”

53

	Mathematical logic Mathematicians & Logicians (1900-1930s)
	Curry-Howard correspondence Computer scientists & Logicians (1950-1960s)
	Proof assistants De Bruijn & Martin-Löf (1960-1970s)
	Proof-by-Action
	Paradigm
	Existential Graphs (Peirce, 1896)
	The three icons of Alpha
	Relationship with formulas
	Illative transformations
	Example: modus ponens
	The scroll
	The n-ary scroll
	Blooming (Me, 2022)
	Corollaries
	Lines of Identity
	Intuitionistic quantification
	Spaghetti statements
	Gardens
	Iteration and Deiteration
	Iteration and Deiteration
	Insertion and Deletion
	Scrolling
	Instantiation
	Abstraction
	Case reasoning
	Ex falso quodlibet
	QED
	Natural rules ❀
	Cultural rules ✂
	Cult-elimination
	Flower Prover
	Scroll nets
	Justifications
	Interactions
	Simply-typed λ-calculus
	Simulating β-reduction
	Function call vs. inlining
	[TODO] Computational expressivity
	[TODO] Notational freedom
	Related works (non-exhaustive)
	Bibliography
	Bibliography

