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Mathematical logic Mathematicians & Logicians (1900-1930s)

xisA AllAareB A(x) Vy.A(y)= B(y)

w>

X is B B(x)

« Generic patterns of deduction as symbolic rules

« Formalist school (Hilbert):

Maths as a huge game

Goal: to prove theorems by following inference rules

 Proof theory: design & study of rule systems capturing maths



Curry-Howard correspondence  Computer scientists & Logicians (1950-1960s)

xisof type A fisa function from A to B Fx:A +Ff:A—>B

~>

f(x)isof type B F f(x):B

« Generic patterns of computation as symbolic rules

- Constructivist school (Brouwer-Heyting-Kolmogorov):

Maths as a huge computation

Goal: to implement theorems by building programs

- Type theory: design & study of rule systems capturing (sound) programming
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« verified programming



Proof assistants De Bruijn & Martin-L6f (1960-1970s)

Dream: a user-friendly, yet powerful language/software environment for both:

« formal mathematics
- verified programming

Problem: current interfaces (andincoming ones based on LLms) StUCK 1N textual and verbal form

Commands on Symbolic expressions

N\ 7

Proofs Statements
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Proof-by-Action

Solution: no-code interface for proof assistants

> more graphical and gestural paradigm

Direct manipulation of Formulas

- . 7 v
Proofs Statements
Mortal(Socrates)
+ expr + hyp
Socrates : () Y x : () . Human (x) = Mortal (x) Mortal (Socrates)

Human (Socrates)




Proof-by-Action

Solution: interface for proof assistants

> more graphical and gestural paradigm

Direct manipulation of  Boxes

N’
A - 7

Proofs Statements




Proof-by-Action

Solution: no-code interface for proof assistants

> more graphical and gestural paradigm

Direct manipulation of Flowers &

- -

Proofs Statements




Symbolic Manipulations



A demo Is worth a thousand words!



« Fully graphical: no textual proof language

- Both spatial and temporal:

proof = gesture sequence

- Different modes of reasoning with a single “syntax”:

Technique Action Semantics Proof theory
Proof—by-Pomterg Click Intro/Elim Sequent calculus
(Bertot, Kahn, and Théry 1994)

Proof-by-Linking o .
(Chaudhuri 2013) Drag-and-Drop | Forward/Backward | Deep inference




lconic Manipulations



Classical Logic: Existential Graphs




Existential Graphs (Peirce, 1896)

Three diagrammatic proof systems for classical logic:

- Alpha: propositional logic
- Beta: first-order logic

- Gamma: higher-order and modal logics
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Existential Graphs (Peirce, 1896)

Three diagrammatic proof systems for classical logic:

« Alpha: propositional logic
- Beta: first-order logic

- Gamma: higher-order and modal logics
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The three icons of Alpha

« Sheet of assertion

» Juxtaposition

 Cut
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The three icons of Alpha

« Sheet of assertion

> frue (no assertion)

a - a is true
» Juxtaposition
G H — G is true and H is true
« Cut
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The three icons of Alpha

« Sheet of assertion

> frue (no assertion)

a - a is true
» Juxtaposition
G H — G is true and H is true
« Cut
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The three icons of Alpha

« Sheet of assertion

> frue (no assertion)

a - a is true
» Juxtaposition
G H — G is true and H is true
« Cut

@ — G is not true
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Relationship with formulas

T AAB —1A

1 AVB A=>B
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ILlative transformations

Only 4 edition principles!
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ILlative transformations

Only 4 principles!
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ILlative transformations

Only 4 principles!

Iteration (copy-paste) Deiteration (unpaste) Insertion Deletion
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ILlative transformations

Only 4 principles!

Iteration (copy-paste) Deiteration (unpaste) Insertion Deletion

-

and a principle, the Double-cut law:

QHG GHG

14



Example: modus ponens
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Example: modus ponens

Deit
_> a
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Example: modus ponens

Deit
_> a

Dcut
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Example: modus ponens

Dcut Del
— a b — b

Deit
_> a
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Intuitionistic Logic: Flowers




The scroll

| thought | ought to take the general form of argument as the

basal form of composition of signs in my diagrammatization;
0 and this necessarily took the form of a “scroll”, that is [...] a

curved line without contrary flexure and returning into itself
after once crossing itself.

— (Peirce 1906, pp. 533-534)
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| thought | ought to take the general form of argument as the
basal form of composition of signs in my diagrammatization;
and this necessarily took the form of a “scroll”, that is [...] a

curved line without contrary flexure and returning into itself
after once crossing itself.

— (Peirce 1906, pp. 533-534)

AANB=>CAD
- “conditional de inesse” = classical implication
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The scroll

basal form of composition of signs in my diagrammatization;

and this necessarily took the form of a “scroll”, that is [...] a

curved line without contrary flexure and returning into itself
AANB=CAD after once crossing itself.

— (Peirce 1906, pp. 533-534)

0 | thought | ought to take the general form of argument as the

- “conditional de inesse” = classical implication

S scroll = two
“(AABA(CAD))

17



The scroll

| thought | ought to take the general form of argument as the

basal form of composition of signs in my diagrammatization;
and this necessarily took the form of a “scroll”, that is [...] a

curved line without contrary flexure and returning into itself
after once crossing itself.

AAB=CAD — (Peirce 1906, pp. 533-534)

- “conditional de inesse” = classical implication

S scroll = two

(A ABA=(C AD)) » Peirce also introduced = in logic! (Lewis 1920, p. 79)
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The n-ary scroll (Oostra 2010)
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The n-ary scroll (Oostra 2010)

Classical Classical

« @

bvVc a=>>b
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The n-ary scroll (Oostra 2010)

Classical Classical

« @

bvc a=>bvcvdveVf a=b
n=>5
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The n-ary scroll (Oostra 2010)

Intuitionistic Classical

-
00

« @

—|(—|b A\ —|C) a= b
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The n-ary scroll (Oostra 2010)

Generalizes Peirce’s scroll

Intuitionistic Intuitionistic

« @

=i(mb A ) a=>b —(a A 1b)
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The n-ary scroll (Oostra 2010)

Generalizes Peirce’s scroll and cut

Intuitionistic Intuitionistic

« @

(=b A o) “aZa=> 1 =1(a A —b)

18



Blooming (Me, 2022)
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Blooming
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Blooming

Turn inloops into
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Blooming

“Make love, not war”

19


https://en.wikipedia.org/wiki/Make_love,_not_war

The original “theorems” of geometry were those propositions that Euclid
proved, while the corollaries were simple deductions from the theorems
inserted by Euclid’s commentators and editors. They are said to have been
marked the figure of a little garland (or corolla), in the origin.

— Peirce, MS 514 (1909) (peirce 1976)
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The original “theorems” of geometry were those propositions that Euclid
proved, while the corollaries were simple deductions from the theorems
inserted by Euclid’s commentators and editors. They are said to have been
marked the figure of a little garland (or corolla), in the origin.

— Peirce, MS 514 (1909) (peirce 1976)

Petals = (possible) corolla-ries of pistil!
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Predicate Logic: Gardens




Lines of Identity

In Beta, quantifiers and variables are represented with
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Lines of Identity

In Beta, quantifiers and variables are represented with

quantifier location = outermost point
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Lines of Identity

In Beta, quantifiers and variables are represented with

P e———Q

Ix.P(x) A Q(x) Vx.R(x) = S(x)
graphs! = A3x.R(x) A S(X)

quantifier type = outermost point polarity
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Lines of Identity

Problem: no De Morgan duality in logic

P e——0Q

Fx.P(x) A Q(x) Vx.R(x) = S(x)
graphs! 2 =3x.R(x) A 1S(x)

quantifier type = outermost point polarity

22



Intuitionistic quantification

Solution: interpretation

dx.P(x) A Q(x) Vx.R(x) = S(x)

3/V = inloop/outloop
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Intuitionistic quantification

Solution: interpretation

—(dx.P(x) A Q(x)) —1(Vx.R(x) = S(x))

3/V = inloop/outloop

23



Intuitionistic quantification

Solution: polarity-invariant interpretation

dx.P(x) A Q(x) Vx.R(x)= S(x)

3/V = petal/pistil
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Intuitionistic quantification

Solution: interpretation
C S
—1(3x.P(x) A Q(x)) —1(Vx.R(x) = S(x))

3/V = petal/pistil

23



Spaghetti statements

Problem: cables (well known in visual programming)

e EEEEEE—

(ﬁ: (‘;(: isanumber o, §<E v\:-\ N YON))

[These diagrams are] too cumbersome to recommend themselves as a prac-
tical notation.

— (Quine 1955, p. 70)

24



Solution: replace lines with good old binders and variables

dx.P(x) A Q(x) Vx.R(x) = S(x)
carden = content of an area (binders + flowers)

25



Reasoning with Flowers




Iteration and Deiteration

Justify a target by an identical source

e
CAGO

cross-pollination self-pollination
27



Iteration and Deiteration

Works at arbitrary depth!

Cross-pollination
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Iteration and Deiteration

Works at arbitrary depth!

Cross-pollination
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Iteration and Deiteration

Works at arbitrary depth!

Self-pollination
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Iteration and Deiteration

Works at arbitrary depth!

Self-pollination
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Insertion and Deletion

Split in two:
Flower Petal
grow a
AN aog e ﬁ glue
60 oy
¥ o ()
(XD

reading: conclusion — premiss
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Intuitionistic restriction of double-cut principle:

epis
a —

30






Abstraction

(o)~ ()
o
ocorio. o
CONROO
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Ex falso quodlibet

o
&
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‘ ‘ epet
—

(X2
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Metatheory: Nature vs. Culture




Natural rules #®

= (De)1terat10n U Instantiation U Scrollmg U QED U Case reasomng

N e\

{polll pollT} {ipis, lpet} N {epls} {epet} {srep}
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Natural rules #®

= (De)1terat10n U Instantiation U Scrollmg U QED U Case reasomng

N e\

{polll pollT} {ipis, lpet} N {epls} {epet} {srep}

All rules are:

* Invertible: if ® — ¥ then ¥ equivalent to ®

> “Equational” reasoning

 Analytic: if ® — ¥ and a occurs in ¥ then a occurs in @

> Reduces proof-search space

37



Cultural rules <

< = Insertion U Deletion U Abstraction
- _/ N—— — — _/

{grow',glue} {crop,pull} {apis:apet}
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Cultural rules <

< = Insertion U Deletion U Abstraction
- _/ N—— — — _/

{grow',glue} {crop,pull} {apis:apet}

« All rules are non-invertible

- Some rules are non-analytic

38



Cult-elimination

x
Theorem (Soundness): If ® - ¥ then ® = ¥ in every Kripke structure X.

39



Cult-elimination

x
Theorem (Soundness): If ® - ¥ then ® = ¥ in every Kripke structure X.

X &
Theorem (Completeness): If ® = W in every Kripke structure X, then ® + .

39



Cult-elimination

x
Theorem (Soundness): If ® - ¥ then ® = ¥ in every Kripke structure X.

X &
Theorem (Completeness): If ® = W in every Kripke structure X, then ® + .
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Cult-elimination

x
Theorem (Soundness): If ® - ¥ then ® = ¥ in every Kripke structure X.

X &
Theorem (Completeness): If ® = W in every Kripke structure X, then ® + .

&
Corollary (Admissibility of <): If ® - ¥ then @ - ¥.

Completeness of fragment #!

S for proofs
39



The Flower Prover




A demo is worth a thousand pictures!


http://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover

Flower Prover

GUI in the Proof-by-Action paradigm based on the flower calculus

- Represent flowers as nested boxes

- Modal interface to interpret gestural actions:

Proof mode <= Natural (invertible and analytic) rules
Edit mode <= Cultural (non-invertible) rules

Navigation mode <= Contextual closure (functoriality)

42



Towards Curry-Howard




ldea: record every move with arrows

by



ldea: every move with arrows

bty
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ldea: every move with arrows

bty



Scroll nets

ldea: every move with arrows

bty



Scroll nets

ldea: every move with arrows

bty



Scroll nets

ldea: every move with arrows

bty



Justifications

Iteration (copy-paste) Deiteration (unpaste) Insertion Deletion
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Iteration (copy-paste)
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Iteration (copy-paste)

Deiteration (unpaste)

Insertion

Justifications

Deletion
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Iteration (copy-paste)

Deiteration (unpaste)

Insertion

Justifications

Deletion

Structure of

, transformations determined by polarity

45



Interactions

Opening Closing
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Interactions

Opening Closing
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Interactions

Opening Closing
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Interactions

Opening Closing

~ H - e EEsEEEEEsEEEEEEEEsssEEEEEEEEEEEe e e
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Interactions

Opening Closing

~ H - e EEsEEEEEsEEEEEEEEsssEEEEEEEEEEEe e e
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Simply-typed A-calculus
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Simply-typed A-calculus

B
var

x:Af:A->BFf:A—>B
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Simply-typed A-calculus

B A
var var

x:Af:A->BFf:A—>B x:Af:A->BFXx:A
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Simply-typed A-calculus

var var B A
x:Af:A->BFf:A—>B x:A,f:A—>BI—x:Aapp

x:A f:A->BF(f)x:B
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Simply-typed A-calculus

var var B A@
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Simply-typed A-calculus

var var B A@
x:Af:A->BFf:A—>B x:A,f:A—>BI—x:Aapp

x:A f:A->BF(f)x:B
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Simply-typed A-calculus

var var
x:Af:A->BFf:A—>B x:A,f:A—>BI—x:Aapp
x:A f:A->BF(f)x:B lam
x:AFAf.(f)x:(A—-> B)—> B B
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Simply-typed A-calculus

var var
x:Af:A->BFf:A—>B x:A,f:A—>BI—x:Aapp

x:A f:A->BF(f)x:B
x:AFAf.(f)x:(A—-> B)—> B

lam
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Simply-typed A-calculus

var var
x:Af:A->BFf:A—>B x:A,f:A—>BI—x:Aapp

x:A f:A->BF(f)x:B
x:AFAf.(f)x:(A—-> B)—> B
FAxAf.(f)x:A—>(A—->B)—>B

lam

lam
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Simply-typed A-calculus

var var
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Simply-typed A-calculus

var var
x:Af:A->BFf:A—>B x:A,f:A—>BI—x:Aapp

x:A f:A->BF(f)x:B
x:AFAf.(f)x:(A—-> B)—> B
FAxAf.(f)x:A—>(A—->B)—>B

lam

lam
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Simulating 3-reduction

A

(Ax.(x,x)) y
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Simulating 3-reduction
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Simulating 3-reduction
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Simulating 3-reduction

(Ax.(x,x)) y ¥, )
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Function call vs. inlining

HFA—->(A—-> B)—>B HFA—-(A—-B)—>B
49



[TODO] Computational expressivity

 Propositional logic ~ non-recursive, pure functional programming:

» Functions (=)
» Non-recursive algebraic datatypes (A, V)

« Real-world progamming by encoding more expressive types:

» (Co)inductive types: (co)recursion

» Higher-order types: polymorphism

» Dependent types: type-level computation
» Modal types: (monadic) side-effects?

50



[TODO] Notational freedom

Logic is about abstract, generic interactions

> captures well (the structure of) general-purpose programming
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[TODO] Notational freedom

Logic is about abstract, generic interactions

> captures well (the structure of) general-purpose programming

BUT (and contrary to popular belief)

most maths/programming is about concrete representations of the world!

> need for domain-specific interactive notations

51



Related works (non-exhaustive)

- Programming systems:

» Boxer (di Sessa 1994): building programs by manipulating
nested boxes

» Managed copy & paste (Edwards and Petricek 2022):
(de)iteration rules of EGs?

» Schema evolution (Edwards et al. 2024):

datatypes < logical statements

?
schema evolution « illative transformations

« Proof assistants:
» (Ayers 2021): Box datastructure similar to flowers

« Categorical logic:
» (Johnstone 2002): coherent/geometric sequents in topos theory
» (Bonchi et al. 2024): categorical algebra of Beta

52
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