Deep Inference for Graphical Theorem Proving

Pablo Donato

2025-06-10

Grothendieck Institute

D3S seminar

Prague

Introduction

$$\frac{x \text{ is } A \quad \text{All } A \text{ are } B}{x \text{ is } B} \quad \Rightarrow \quad \frac{A(x) \quad \forall y. A(y) \Rightarrow B(y)}{B(x)}$$

Generic patterns of deduction as symbolic rules

$$\frac{x \text{ is } A \quad \text{All } A \text{ are } B}{x \text{ is } B} \quad \Rightarrow \quad \frac{A(x) \quad \forall y. A(y) \Rightarrow B(y)}{B(x)}$$

- Generic patterns of deduction as symbolic rules
- Formalist school (Hilbert):

Maths as a huge game

Goal: to prove theorems by following inference rules

$$\frac{x \text{ is } A \quad \text{All } A \text{ are } B}{x \text{ is } B} \quad \Rightarrow \quad \frac{A(x) \quad \forall y. A(y) \Rightarrow B(y)}{B(x)}$$

- Generic patterns of deduction as symbolic rules
- Formalist school (Hilbert):

Maths as a huge game

Goal: to prove theorems by following inference rules

• Proof theory: design & study of rule systems capturing maths

$$\frac{x \text{ is of type } A \qquad f \text{ is a function from } A \text{ to } B}{f(x) \text{ is of type } B} \qquad \Rightarrow \qquad \frac{\vdash x : A \qquad \vdash f : A \rightarrow B}{\vdash f(x) : B}$$

- Generic patterns of computation as symbolic rules
- Constructivist school (Brouwer-Heyting-Kolmogorov):

Maths as a huge computation

Goal: to implement theorems by building programs

• Type theory: design & study of rule systems capturing (sound) programming

Dream: a powerful language/software environment for both:

- formal mathematics
- verified programming

Dream: a user-friendly, yet powerful language/software environment for both:

- formal mathematics
- verified programming

Problem: current interfaces (and incoming ones based on LLMs) stuck in textual and verbal form

Proof-by-Action

Solution: no-code interface for proof assistants

> more graphical and gestural paradigm

Proof-by-Action

Solution: no-code interface for proof assistants

→ more graphical and gestural paradigm

Proof-by-Action

Solution: no-code interface for proof assistants

→ more graphical and gestural paradigm

Symbolic Manipulations

A demo is worth a thousand words!

Paradigm

- Fully graphical: no textual proof language
- Both spatial and temporal:

proof = gesture sequence

• Different modes of reasoning with a single "syntax":

Technique	Action	Semantics	Proof theory
Proof-by-Pointing (Bertot, Kahn, and Théry 1994)	Click	Intro/Elim	Sequent calculus
Proof-by-Linking (Chaudhuri 2013)	Drag-and-Drop	Forward/Backward	Deep inference

Iconic Manipulations

Classical Logic: Existential Graphs

Three diagrammatic proof systems for classical logic:

- Alpha: propositional logic
- Beta: first-order logic
- Gamma: higher-order and modal logics

Three diagrammatic proof systems for classical logic:

- Alpha: propositional logic
- Beta: first-order logic
- Gamma: higher-order and modal logics

Sheet of assertion

Juxtaposition

Cut

Sheet of assertion

 \mapsto true (no assertion)

Juxtaposition

Cut

Sheet of assertion

 \mapsto true (no assertion)

 \boldsymbol{a}

Juxtaposition

• Cut

Sheet of assertion

 $\mapsto \qquad \text{true (no assertion)}$ $\mapsto \qquad a \text{ is true}$

Juxtaposition

Cut

Sheet of assertion

 $\begin{array}{ccc} & \mapsto & \text{true (no assertion)} \\ a & \mapsto & a \text{ is true} \end{array}$

Juxtaposition

G H

• Cut

Sheet of assertion

$$\begin{array}{ccc} & \mapsto & \text{true (no assertion)} \\ a & \mapsto & a \text{ is true} \end{array}$$

Juxtaposition

$$G \quad H \quad \mapsto \quad G \text{ is true and } H \text{ is true}$$

Cut

Sheet of assertion

$$a \mapsto true \text{ (no assertion)}$$
 $a \mapsto a \text{ is true}$

Juxtaposition

$$G \quad H \quad \mapsto \quad G \text{ is true and } H \text{ is true}$$

• Cut

Sheet of assertion

$$a \mapsto true \text{ (no assertion)}$$

$$a \mapsto a \text{ is true}$$

Juxtaposition

$$G \quad H \quad \mapsto \quad G \text{ is true and } H \text{ is true}$$

Cut

Relationship with formulas

Only 4 edition principles!

Only 4 edition principles!

Iteration (copy-paste)		
$egin{array}{cccccccccccccccccccccccccccccccccccc$		

Only 4 edition principles!

Iteration (copy-paste)	Deiteration (unpaste)	
$G \longrightarrow G G$	G G o G	
$G \longrightarrow G G$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	

Only 4 edition principles!

Iteration (copy-paste)	Deiteration (unpaste)	Insertion
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	ightarrow G

Only 4 edition principles!

Iteration (copy-paste)	Deiteration (unpaste)	Insertion	Deletion
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ightarrow G	$G \rightarrow$

Only 4 edition principles!

Iteration (copy-paste)	Deiteration (unpaste)	Insertion	Deletion
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	ightarrow G	$G \rightarrow$

and a space principle, the **Double-cut** law:

Example: modus ponens

Example: modus ponens

Example: modus ponens

Example: modus ponens

Intuitionistic Logic: Flowers

I thought I ought to take the general form of argument as the basal form of composition of signs in my diagrammatization; and this necessarily took the form of a "scroll", that is [...] a curved line without contrary flexure and returning into itself after once crossing itself.

- (Peirce 1906, pp. 533-534)

$$A \wedge B \Rightarrow C \wedge D$$

I thought I ought to take the general form of argument as the basal form of composition of signs in my diagrammatization; and this necessarily took the form of a "scroll", that is [...] a curved line without contrary flexure and returning into itself after once crossing itself.

— (Peirce 1906, pp. 533-534)

• "conditional de inesse" = classical implication

$$A \wedge B \Rightarrow C \wedge D$$

$$\neg (A \land B \land \neg (C \land D))$$

I thought I ought to take the general form of argument as the basal form of composition of signs in my diagrammatization; and this necessarily took the form of a "scroll", that is [...] a curved line without contrary flexure and returning into itself after once crossing itself.

— (Peirce 1906, pp. 533-534)

- "conditional de inesse" = classical implication
- ⇒ scroll = two nested cuts

$$A \wedge B \Rightarrow C \wedge D$$

$$\neg (A \land B \land \neg (C \land D))$$

I thought I ought to take the general form of argument as the basal form of composition of signs in my diagrammatization; and this necessarily took the form of a "scroll", that is [...] a curved line without contrary flexure and returning into itself after once crossing itself.

— (Peirce 1906, pp. 533-534)

- "conditional de inesse" = classical implication
- ⇒ scroll = two nested cuts
- Peirce also introduced ⇒ in logic! (Lewis 1920, p. 79)

$$n = 5$$

Classical

 $b \lor c$

$$n = 5$$

Classical

$$a \Rightarrow b$$

Classical

 $b \lor c$

 $a \Rightarrow b \lor c \lor d \lor e \lor f$

n = 5

Classical

$$a \Rightarrow b$$

Continuity!

Intuitionistic

 $b \lor c$

$$n = 2$$

Classical

$$a \Rightarrow b$$

Continuity! Generalizes Peirce's scroll

Intuitionistic

$$\neg(\neg b \land \neg c)$$

$$a \Rightarrow b$$

$$n = 1$$

Intuitionistic

$$\neg(a \land \neg b)$$

Continuity! Generalizes Peirce's scroll and cut

Intuitionistic

$$\neg(\neg b \land \neg c)$$

$$\neg a \triangleq a \Rightarrow \bot$$

$$n = 0$$

Intuitionistic

$$\neg(a \land \neg b)$$

Turn inloops into petals.

"Make love, not war"

Corollaries

The original "theorems" of geometry were those propositions that Euclid proved, while the **corollaries** were simple deductions from the theorems inserted by Euclid's commentators and editors. They are said to have been marked the figure of a little garland (or corolla), in the origin.

— Peirce, MS 514 (1909) (Peirce 1976)

Corollaries

The original "theorems" of geometry were those propositions that Euclid proved, while the **corollaries** were simple deductions from the theorems inserted by Euclid's commentators and editors. They are said to have been marked the figure of a little garland (or corolla), in the origin.

— Peirce, MS 514 (1909) (Peirce 1976)

Petals = (possible) corolla-ries of pistil!

Predicate Logic: Gardens

In Beta, quantifiers and variables are represented with lines.

In Beta, quantifiers and variables are represented with lines.

quantifier location = **outermost** point

In Beta, quantifiers and variables are represented with lines.

$$\exists x. P(x) \land Q(x)$$

existential graphs!

$$\forall x.R(x) \Rightarrow S(x)$$

$$\simeq \neg \exists x. R(x) \land \neg S(x)$$

quantifier type = outermost point polarity

Problem: no De Morgan duality in intuitionistic logic

$$\exists x. P(x) \land Q(x)$$

existential graphs!

$$\forall x.R(x) \Rightarrow S(x)$$

$$\not\simeq \neg \exists x. R(x) \land \neg S(x)$$

quantifier type = outermost point polarity

Solution: polarity-invariant interpretation

$$\exists x. P(x) \land Q(x)$$

$$\forall x.R(x) \Rightarrow S(x)$$

 $\exists / \forall = inloop/outloop$

Solution: polarity-invariant interpretation

$$\neg(\exists x. P(x) \land Q(x))$$

$$\neg(\forall x.R(x) \Rightarrow S(x))$$

$$\exists / \forall = inloop/outloop$$

Solution: polarity-invariant interpretation

$$\exists x. P(x) \land Q(x)$$

$$\forall x.R(x) \Rightarrow S(x)$$

 $\exists / \forall = \text{petal/pistil}$

Solution: polarity-invariant interpretation

$$\neg(\exists x. P(x) \land Q(x))$$

$$\neg(\forall x.R(x) \Rightarrow S(x))$$

$$\exists / \forall = \text{petal/pistil}$$

Spaghetti statements

Problem: cables all over the place (well known in visual programming)

[These diagrams are] too cumbersome to recommend themselves as a practical notation.

— (Quine 1955, p. 70)

Gardens

Solution: replace lines with good old binders and variables

$$\exists \mathbf{x}. P(\mathbf{x}) \land Q(\mathbf{x})$$

$$\forall \mathbf{x}.R(\mathbf{x}) \Rightarrow S(\mathbf{x})$$

garden = content of an area (binders + flowers)

Reasoning with Flowers

Justify a target by an identical source

Works at arbitrary depth!

Cross-pollination

Works at arbitrary depth!

Cross-pollination

Works at arbitrary depth!

Self-pollination

Works at arbitrary depth!

Self-pollination

Insertion and Deletion

Backward reading: conclusion

29

Scrolling

Intuitionistic restriction of double-cut principle:

Instantiation

Abstraction

Case reasoning

Ex falso quodlibet

Metatheory: Nature vs. Culture

Natural rules *

Natural rules *

$$\textcircled{Poll} \downarrow, poll \uparrow \} \qquad \underbrace{ \text{[De)iteration } \cup \text{ Instantiation } \cup \text{ Scrolling } \cup \text{ QED } \cup \text{ Case reasoning } }_{\text{[epis]}}$$

All rules are:

• Invertible: if $\Phi \longrightarrow \Psi$ then Ψ equivalent to Φ

Natural rules **

All rules are:

- Invertible: if $\Phi \longrightarrow \Psi$ then Ψ equivalent to Φ
- → "Equational" reasoning

Natural rules **

$$\mathscr{B} = \underbrace{(De)iteration}_{\{poll\downarrow,poll\uparrow\}} \cup \underbrace{Instantiation}_{\{ipis,ipet\}} \cup \underbrace{Scrolling}_{\{epis\}} \cup \underbrace{QED}_{\{epet\}} \cup \underbrace{Case\ reasoning}_{\{srep\}}$$

All rules are:

- Invertible: if $\Phi \longrightarrow \Psi$ then Ψ equivalent to Φ
- → "Equational" reasoning
- Analytic: if $\Phi \longrightarrow \Psi$ and a occurs in Ψ then a occurs in Φ

Natural rules *

$$\mathscr{B} = \underbrace{(De)iteration}_{\{poll\downarrow,poll\uparrow\}} \cup \underbrace{Instantiation}_{\{ipis,ipet\}} \cup \underbrace{Scrolling}_{\{epis\}} \cup \underbrace{QED}_{\{epet\}} \cup \underbrace{Case\ reasoning}_{\{srep\}}$$

All rules are:

- Invertible: if $\Phi \longrightarrow \Psi$ then Ψ equivalent to Φ
- → "Equational" reasoning
- Analytic: if $\Phi \longrightarrow \Psi$ and a occurs in Ψ then a occurs in Φ
- → Reduces proof-search space

Cultural rules ≫

$$= \underbrace{Insertion}_{\{grow,glue\}} \cup \underbrace{Deletion}_{\{crop,pull\}} \cup \underbrace{Abstraction}_{\{apis,apet\}}$$

Cultural rules ≫

$$= \underbrace{Insertion}_{\{grow,glue\}} \cup \underbrace{Deletion}_{\{crop,pull\}} \cup \underbrace{Abstraction}_{\{apis,apet\}}$$

- All rules are non-invertible
- Some rules are non-analytic

Theorem (Soundness): If $\Phi \vdash \Psi$ then $\Phi \vDash \Psi$ in every Kripke structure \mathcal{K} .

Theorem (Soundness): If $\Phi \vdash \Psi$ then $\Phi \vDash \Psi$ in every Kripke structure \mathcal{K} .

Theorem (Completeness): If $\Phi \vDash \Psi$ in every Kripke structure \mathcal{K} , then $\Phi \vdash \Psi$.

Theorem (Soundness): If $\Phi \vdash \Psi$ then $\Phi \vDash \Psi$ in every Kripke structure \mathcal{K} .

Theorem (Completeness): If $\Phi \vDash \Psi$ in every Kripke structure \mathcal{K} , then $\Phi \vdash \Psi$.

Corollary (Admissibility of $>\!\!<$): If $\Phi \vdash \Psi$ then $\Phi \stackrel{\infty}{\vdash} \Psi$.

Theorem (Soundness): If $\Phi \vdash \Psi$ then $\Phi \vDash \Psi$ in every Kripke structure \mathcal{K} .

Theorem (Completeness): If $\Phi \vDash \Psi$ in every Kripke structure \mathcal{K} , then $\Phi \vdash \Psi$.

Corollary (Admissibility of $>\!\!<$): If $\Phi \vdash \Psi$ then $\Phi \vdash \Psi$.

Completeness of analytic fragment **%**!

→ normal form for proofs

The Flower Prover

A <u>demo</u> is worth a thousand pictures!

Flower Prover

GUI in the Proof-by-Action paradigm based on the flower calculus

- Represent flowers as nested boxes
- Modal interface to interpret gestural actions:

Proof mode

⇔ Natural (invertible and analytic) rules

Edit mode ← Cultural (non-invertible) rules

Navigation mode ← Contextual closure (functoriality)

Towards Curry-Howard

Iteration (copy-paste)	Deiteration (unpaste)	Insertion	Deletion

Iteration (copy-paste)	Deiteration (unpaste)	Insertion	Deletion
G			
G			

Iteration (copy-paste)	Deiteration (unpaste)	Insertion	Deletion
G			
G			

Structure of digraph, transformations determined by polarity

Opening Closing

Closing

Opening

Closing

Opening

Closing

$$\overline{x:A,f:A \to B \vdash f:A \to B}$$
 var $\overline{x:A,f:A \to B \vdash x:A}$ var

$$\frac{\overline{x:A,f:A\to B \vdash f:A\to B}}{x:A,f:A\to B \vdash x:A} \text{var} \frac{\overline{x:A,f:A\to B \vdash x:A}}{x:A,f:A\to B \vdash (f)x:B} \text{app}$$

$$\frac{\overline{x:A,f:A\to B \vdash f:A\to B}}{x:A,f:A\to B \vdash x:A} \text{var} \frac{\overline{x:A,f:A\to B \vdash x:A}}{x:A,f:A\to B \vdash (f)x:B} \text{app}$$

$$\frac{\overline{x:A,f:A\to B \vdash f:A\to B}}{x:A,f:A\to B \vdash x:A} \text{var} \frac{\overline{x:A,f:A\to B \vdash x:A}}{x:A,f:A\to B \vdash (f)x:B} \text{app}$$

$$\frac{\overline{x:A,f:A\to B\vdash f:A\to B}}{x:A,f:A\to B\vdash x:A} \text{var} \frac{\overline{x:A,f:A\to B\vdash x:A}}{x:A,f:A\to B\vdash (f)x:B} \text{app}$$

$$\frac{x:A,f:A\to B\vdash (f)x:B}{x:A\vdash \lambda f.(f)x:(A\to B)\to B} \text{lam}$$

$$\frac{\overline{x:A,f:A\to B\vdash f:A\to B}}{x:A,f:A\to B\vdash x:A} \text{var} \frac{\overline{x:A,f:A\to B\vdash x:A}}{x:A,f:A\to B\vdash (f)x:B} \text{app}$$

$$\frac{x:A,f:A\to B\vdash (f)x:B}{x:A\vdash \lambda f.(f)x:(A\to B)\to B} \text{lam}$$

$$\frac{\overline{x:A,f:A\to B\vdash f:A\to B}}{x:A,f:A\to B\vdash x:A} \text{var} \frac{\overline{x:A,f:A\to B\vdash x:A}}{x:A,f:A\to B\vdash (f)x:B} \text{app}$$

$$\frac{x:A,f:A\to B\vdash (f)x:B}{x:A\vdash \lambda f.(f)x:(A\to B)\to B} \text{lam}$$

$$\frac{x:A,f:A\to B\vdash f:A\to B}{\underbrace{x:A,f:A\to B\vdash x:A}_{\text{app}}} \text{par}$$

$$\frac{x:A,f:A\to B\vdash (f)x:B}{\underbrace{x:A\vdash \lambda f.(f)x:(A\to B)\to B}_{\text{lam}}} \text{lam}$$

$$\frac{h}{h} \frac{\lambda x.\lambda f.(f)x:A\to (A\to B)\to B} \text{lam}$$

$$(\lambda x.\langle x, x\rangle) y$$

$$(\lambda x.\langle x, x\rangle) y$$

 $(\lambda x.\langle x, x\rangle) y$

Function call vs. inlining

[TODO] Computational expressivity

- Propositional logic \sim non-recursive, pure functional programming:
 - Functions (⇒)
 - Non-recursive algebraic datatypes (∧, ∨)
- Real-world programming by encoding more expressive types:
 - (Co)inductive types: (co)recursion
 - Higher-order types: polymorphism
 - Dependent types: type-level computation
 - Modal types: (monadic) side-effects?

[TODO] Notational freedom

Logic is about abstract, generic interactions

→ captures well (the structure of) general-purpose programming

[TODO] Notational freedom

Logic is about abstract, generic interactions

⇒ captures well (the structure of) *general-purpose* programming

BUT (and contrary to popular belief)

most maths/programming is about concrete representations of the world!

→ need for domain-specific interactive notations

Related works (non-exhaustive)

Programming systems:

- Boxer (di Sessa 1994): building programs by manipulating nested boxes
- Managed copy & paste (Edwards and Petricek 2022): (de)iteration rules of EGs?
- ► Schema evolution (Edwards et al. 2024):

datatypes ↔ logical statements

schema evolution $\stackrel{?}{\leftrightarrow}$ illative transformations

• Proof assistants:

- ► (Ayers 2021): Box datastructure similar to flowers
- Categorical logic:
 - (Johnstone 2002): coherent/geometric sequents in topos theory
 - ▶ (Bonchi et al. 2024): categorical algebra of Beta

$$\forall \vec{x}. \left(\bigwedge \Phi \Rightarrow \bigvee_{i} \exists \vec{y}_{i}. \Psi_{i} \right)$$

Bibliography

- Ayers, Edward W. 2021. "A Tool for Producing Verified, Explainable Proofs.."
- Bertot, Yves, Gilles Kahn, and Laurent Théry. 1994. "Proof by Pointing". Edited by Masami Hagiya, John C. Mitchell, Gerhard Goos, and Juris Hartmanis. *Theoretical Aspects of Computer Software*. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-57887-0_94.
- Bonchi, Filippo, Alessandro Di Giorgio, Nathan Haydon, and Pawel Sobocinski. 2024. "Diagrammatic Algebra of First Order Logic". arXiv. January 2024. https://doi.org/10.48550/arXiv.2401.07055.
- Chaudhuri, Kaustuv. 2013. "Subformula Linking as an Interaction Method". Edited by Sandrine Blazy, Christine Paulin-Mohring, David Pichardie, David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, et al.. *Interactive Theorem*

Proving. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-39634-2_28.

Edwards, Jonathan, and Tomas Petricek. 2022. "Interaction Vs. Abstraction: Managed Copy and Paste". In *Proceedings of the 1st ACM SIGPLAN International Workshop on Programming Abstractions and Interactive Notations, Tools, And Environments*, 11–19. Auckland New Zealand: ACM. https://doi.org/10.1145/3563836.3568723.

Edwards, Jonathan, Tomas Petricek, Tijs Van Der Storm, and Geoffrey Litt. 2024. "Schema Evolution in Interactive Programming Systems". *The Art, Science, And Engineering of Programming* 9 (1): 2. https://doi.org/10.22152/programming-journal.org/2025/9/2.

- Johnstone, Peter T. 2002. *Sketches of an Elephant: A Topos Theory Compendium*. Vol. 2. Oxford Logic Guides. Oxford, England: Clarendon Press.
- Lewis, C. I. 1920. "A Survey of Symbolic Logic". *Journal of Philosophy, Psychology and Scientific Methods* 17 (3): 78–79. https://doi.org/10.2307/2940631.
- Oostra, Arnold. 2010. Los Gráficos Alfa De Peirce Aplicados a La Lógica Intuicionista. Cuadernos De Sistemática Peirceana. Centro de Sistemática Peirceana.
- Peirce, Charles Sanders. 1906. "Prolegomena to an Apology for Pragmaticism". *The Monist* 16 (4): 492–546. https://www.jstor.org/stable/27899680.
- Peirce, Charles Sanders. 1976. "Mathematical Miscellanea. 1". Edited by Carolyn Eisele. New Elements of Mathematics. De Gruyter.

Quine, Willard Van Orman. 1955. *Mathematical Logic*. Harvard University Press. Sessa, A. di. 1994. "Boxer Structures."