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Introduction



Context



Logic

• Study of sound reasoning
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• Study of sound reasoning

• Example of everyday life deduction:

premisses
conclusion

it rains you don’t have you are outside
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you are wet 
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Logic

• Study of sound reasoning

• Example of everyday life deduction:

premisses
conclusion

it rains you don’t have you are outside
you are not under a bus shelter …

you are wet 

• Hidden assumptions ⇒ lack of certainty
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Formal logic

Let’s try another one (Aristotle – 4th century BC):

Socrates is human All humans are mortal
Socrates is mortal
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Formal logic

Let’s try another one (Aristotle – 4th century BC):

Socrates is human All humans are mortal
Socrates is mortal

• Better! But why does it hold?

• Forget everything about reality:

𝑥 is 𝑃 All 𝑃 are 𝑄
𝑥 is 𝑄

⤷ Formal essence of logical reasoning
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Mathematical logic

𝑥 is 𝑃 All 𝑃 are 𝑄
𝑥 is 𝑄
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Mathematical logic

𝑥 is 𝑃 All 𝑃 are 𝑄
𝑥 is 𝑄

⇝ 𝑃(𝑥) ∀𝑦.𝑃(𝑦) ⇒ 𝑄(𝑦)
𝑄(𝑥)
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Mathematical logic
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• Generic patterns of deduction as rules
• Formalist school (Hilbert – 20th century):

Maths as a huge game

Goal: to prove theorems by following inference rules
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Mathematical logic

𝑥 is 𝑃 All 𝑃 are 𝑄
𝑥 is 𝑄

⇝ 𝑃(𝑥) ∀𝑦.𝑃(𝑦) ⇒ 𝑄(𝑦)
𝑄(𝑥)

• Generic patterns of deduction as rules
• Formalist school (Hilbert – 20th century):

Maths as a huge game

Goal: to prove theorems by following inference rules

• Proof theory: design & study of rule systems capturing maths
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Proof assistants

• Inference rules represented with symbols
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Proof assistants

• Inference rules represented with symbols

• Computers very good at manipulating symbols and following rules

⤷ Teach computers how to do maths with proof theory!

• Problem: maths is hard ⇒ need for a human in the loop

⤷ Interactive Theorem Provers (ITPs)
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Contributions



Textual vs. Graphical

State-of-the art: build proofs by writing textual commands

Deep Inference for Graphical Theorem Proving



Textual vs. Graphical

State-of-the art: build proofs by writing textual commands

 : “Please apply this rule”
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Textual vs. Graphical

State-of-the art: build proofs by writing textual commands

 : “Please apply this rule”

 : “  OK here is the result!”
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Textual vs. Graphical

State-of-the art: build proofs by writing textual commands

 : “Please apply this rule”

 : “  ERROR: dkfsljfjdklsfjdkfjsldjfkdlsfj”
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Textual vs. Graphical

State-of-the art: build proofs by writing textual commands

 : “Please apply this rule”

 : “  ERROR: dkfsljfjdklsfjdkfjsldjfkdlsfj”

1st contribution: build proofs by direct manipulation of formulas
⤷ No need to memorize the rules
⤷ More straightforward interaction
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Symbolic vs. Iconic

• Symbols are hard to:
‣ learn ⇒ purely conventional meaning
‣ manipulate ⇒ need for very precise gestures
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Symbolic vs. Iconic

• Symbols are hard to:
‣ learn ⇒ purely conventional meaning
‣ manipulate ⇒ need for very precise gestures

• Formulas can interact by being moved in the same space

2nd contribution: replace logical symbols by geometrical diagrams
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Symbolic Manipulations



Proof-by-Action



A demo is worth a thousand words!



Paradigm

• Fully graphical: no textual proof language
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Paradigm

• Fully graphical: no textual proof language

• Both spatial and temporal:

proof = gesture sequence
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Paradigm

• Fully graphical: no textual proof language

• Both spatial and temporal:

proof = gesture sequence

• Different modes of reasoning with a single “syntax”:

Click ⟺ introduction/elimination
Drag-and-Drop ⟺ backward/forward
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coq-actema (Bouverot, Donato, Najjar, Strub, Werner)
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Semantics of Drag-and-Drop



Subformula Linking (Chaudhuri 2013)

Idea: bring matching subformulas through switch rules

→ 𝐴 ∧ 𝐵 ⧁ 𝐵 ∧ (𝐴 ∨ 𝐶) ∧ 𝐷
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Subformula Linking (Chaudhuri 2013)

Idea: bring matching subformulas through switch rules

switch

⎩

{{
⎨

{{
⎧

→ 𝐴 ∧ 𝐵 ⧁ 𝐵 ∧ (𝐴 ∨ 𝐶) ∧ 𝐷
→ 𝐵 ∧ (𝐴 ∧ 𝐵 ⧁ (𝐴 ∨ 𝐶) ∧ 𝐷)
→ 𝐵 ∧ (𝐴 ∧ 𝐵 ⧁ 𝐴 ∨ 𝐶) ∧ 𝐷
→ 𝐵 ∧ ((𝐴 ∧ 𝐵 ⧁ 𝐴) ∨ 𝐶) ∧ 𝐷
→ 𝐵 ∧ ((𝐵 ⇒ 𝐴 ⧁ 𝐴) ∨ 𝐶) ∧ 𝐷
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Subformula Linking (Chaudhuri 2013)

Idea: bring matching subformulas through switch rules

switch

⎩

{{
⎨

{{
⎧

→ 𝐴 ∧ 𝐵 ⧁ 𝐵 ∧ (𝐴 ∨ 𝐶) ∧ 𝐷
→ 𝐵 ∧ (𝐴 ∧ 𝐵 ⧁ (𝐴 ∨ 𝐶) ∧ 𝐷)
→ 𝐵 ∧ (𝐴 ∧ 𝐵 ⧁ 𝐴 ∨ 𝐶) ∧ 𝐷
→ 𝐵 ∧ ((𝐴 ∧ 𝐵 ⧁ 𝐴) ∨ 𝐶) ∧ 𝐷
→ 𝐵 ∧ ((𝐵 ⇒ 𝐴 ⧁ 𝐴) ∨ 𝐶) ∧ 𝐷

identity { → 𝐵 ∧ ((𝐵 ⇒ ⊤) ∨ 𝐶) ∧ 𝐷

Deep Inference for Graphical Theorem Proving



Subformula Linking (Chaudhuri 2013)

Idea: bring matching subformulas through switch rules

switch

⎩

{{
⎨

{{
⎧

→ 𝐴 ∧ 𝐵 ⧁ 𝐵 ∧ (𝐴 ∨ 𝐶) ∧ 𝐷
→ 𝐵 ∧ (𝐴 ∧ 𝐵 ⧁ (𝐴 ∨ 𝐶) ∧ 𝐷)
→ 𝐵 ∧ (𝐴 ∧ 𝐵 ⧁ 𝐴 ∨ 𝐶) ∧ 𝐷
→ 𝐵 ∧ ((𝐴 ∧ 𝐵 ⧁ 𝐴) ∨ 𝐶) ∧ 𝐷
→ 𝐵 ∧ ((𝐵 ⇒ 𝐴 ⧁ 𝐴) ∨ 𝐶) ∧ 𝐷

identity { → 𝐵 ∧ ((𝐵 ⇒ ⊤) ∨ 𝐶) ∧ 𝐷

unit elimination {
→ 𝐵 ∧ (⊤ ∨ 𝐶) ∧ 𝐷
→ 𝐵 ∧ ⊤ ∧ 𝐷
→ 𝐵 ∧ 𝐷

Deep Inference for Graphical Theorem Proving



Subformula Linking (Chaudhuri 2013)

Idea: bring matching subformulas through switch rules

switch

⎩

{{
⎨

{{
⎧

→ 𝐴 ∧ 𝐵 ⧁ 𝐵 ∧ (𝐴 ∨ 𝐶) ∧ 𝐷
→ 𝐵 ∧ (𝐴 ∧ 𝐵 ⧁ (𝐴 ∨ 𝐶) ∧ 𝐷)
→ 𝐵 ∧ (𝐴 ∧ 𝐵 ⧁ 𝐴 ∨ 𝐶) ∧ 𝐷
→ 𝐵 ∧ ((𝐴 ∧ 𝐵 ⧁ 𝐴) ∨ 𝐶) ∧ 𝐷
→ 𝐵 ∧ ((𝐵 ⇒ 𝐴 ⧁ 𝐴) ∨ 𝐶) ∧ 𝐷

identity { → 𝐵 ∧ ((𝐵 ⇒ ⊤) ∨ 𝐶) ∧ 𝐷

unit elimination {
→ 𝐵 ∧ (⊤ ∨ 𝐶) ∧ 𝐷
→ 𝐵 ∧ ⊤ ∧ 𝐷
→ 𝐵 ∧ 𝐷

Variant of the Calculus of Structures (Guglielmi 1999)
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Linking under quantifiers (Donato, Strub, and Werner 2022)

→ ∃𝑦. ∀𝑥.𝑅(𝑥, 𝑦) ⧁ ∀𝑎.∃𝑏.𝑅(𝑎, 𝑏)
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Linking under quantifiers (Donato, Strub, and Werner 2022)

• Unify linked subformulas

→ ∃𝑦. ∀𝑥.𝑅(𝑥, 𝑦) ⧁ ∀𝑎.∃𝑏.𝑅(𝑎, 𝑏)

𝑥 𝑎

𝑦 𝑏
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Linking under quantifiers (Donato, Strub, and Werner 2022)

• Unify linked subformulas
• Check for ∀∃ dependency cycles

→ ∃𝑦. ∀𝑥.𝑅(𝑥, 𝑦) ⧁ ∀𝑎.∃𝑏.𝑅(𝑎, 𝑏)

𝑥 𝑎

𝑦 𝑏

✓
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Linking under quantifiers (Donato, Strub, and Werner 2022)

• Unify linked subformulas
• Check for ∀∃ dependency cycles
• Switch uninstantiated quantifiers

→ ∃𝑦. ∀𝑥.𝑅(𝑥, 𝑦) ⧁ ∀𝑎.∃𝑏.𝑅(𝑎, 𝑏)
→ ∀𝑦.(∀𝑥.𝑅(𝑥, 𝑦) ⧁ ∀𝑎. ∃𝑏.𝑅(𝑎, 𝑏))

→ ∀𝑦.∀𝑎.(∀𝑥.𝑅(𝑥, 𝑦) ⧁ ∃𝑏. 𝑅(𝑎, 𝑏))

𝑥 𝑎

𝑦 𝑏

✓
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Linking under quantifiers (Donato, Strub, and Werner 2022)

• Unify linked subformulas
• Check for ∀∃ dependency cycles
• Switch uninstantiated quantifiers
• Instantiate unified variables

→ ∃𝑦. ∀𝑥.𝑅(𝑥, 𝑦) ⧁ ∀𝑎.∃𝑏.𝑅(𝑎, 𝑏)
→ ∀𝑦.(∀𝑥.𝑅(𝑥, 𝑦) ⧁ ∀𝑎. ∃𝑏.𝑅(𝑎, 𝑏))

→ ∀𝑦.∀𝑎.(∀𝑥.𝑅(𝑥, 𝑦) ⧁ ∃𝑏. 𝑅(𝑎, 𝑏))

→ ∀𝑦.∀𝑎.(∀𝑥. 𝑅(𝑥, 𝑦) ⧁ 𝑅(𝑎, 𝑦))
→ ∀𝑦.∀𝑎.(𝑅(𝑎, 𝑦) ⧁ 𝑅(𝑎, 𝑦))
→∗ ⊤

𝑥 𝑎

𝑦 𝑏

✓
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Linking under quantifiers (Donato, Strub, and Werner 2022)

• Unify linked subformulas

→ ∀𝑎.∃𝑏.𝑅(𝑎, 𝑏) ⧁ ∃𝑦.∀𝑥.𝑅(𝑥, 𝑦)

𝑥 𝑎

𝑦 𝑏

×
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Linking under quantifiers (Donato, Strub, and Werner 2022)

• Unify linked subformulas
• Check for ∀∃ dependency cycles

→ ∀𝑎.∃𝑏.𝑅(𝑎, 𝑏) ⧁ ∃𝑦.∀𝑥.𝑅(𝑥, 𝑦)

𝑥 𝑎

𝑦 𝑏

×
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Rewriting equalities (Donato, Strub, and Werner 2022)

Add 4 rules ⟹ rewrite tactic for free!

𝑡 = 𝑢 ⧁ 𝐴 → 𝐴[𝑢/𝑡] 𝑡 = 𝑢 ⧁ 𝐴 → 𝐴[𝑡/𝑢]
𝑡 = 𝑢 ⊛ 𝐴 → 𝐴[𝑢/𝑡] 𝑡 = 𝑢 ⊛ 𝐴 → 𝐴[𝑡/𝑢]
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Rewriting equalities (Donato, Strub, and Werner 2022)

Add 4 rules ⟹ rewrite tactic for free!

𝑡 = 𝑢 ⧁ 𝐴 → 𝐴[𝑢/𝑡] 𝑡 = 𝑢 ⧁ 𝐴 → 𝐴[𝑡/𝑢]
𝑡 = 𝑢 ⊛ 𝐴 → 𝐴[𝑢/𝑡] 𝑡 = 𝑢 ⊛ 𝐴 → 𝐴[𝑡/𝑢]

Compositional with semantics of connectives:

• Quantifiers: rewrite modulo unification
• Implication: conditional rewrite
• Arbitrary combinations are possible:

∀𝑥.𝑥 ≠ 0 ⇒ 𝑓(𝑥) = 𝑔(𝑥) ⧁ ∃𝑦.𝐴(𝑓(𝑦)) ∨ 𝐵(𝑦)

→∗ ∃𝑦.(𝑦 ≠ 0 ∧ 𝐴(𝑔(𝑦))) ∨ 𝐵(𝑦)
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Completeness

Add the following rules:

• Init 𝐶+ A ⇒ B → 𝐶+ A ⧁ B 𝐶− A ∧ B → 𝐶− A ⊛ B

• Release 𝐶+ A ⧁ B → 𝐶+ A ⇒ B 𝐶− A ⊛ B → 𝐶− A ∧ B

• Contraction 𝐶− A → 𝐶− A ∧ A

Theorem (Completeness) :  If Γ ⊢ 𝐴 is provable in sequent calculus, then

⋀ Γ ⇒ 𝐴 →∗ ⊤
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Conclusion

• coq-actema still in development, but already usable
⤷ follow install instructions on GitHub!

• Based on the solid proof theory of subformula linking

• Next step: exposure to real users

‣ Beginners/students: introductory logic/proof assistants course
‣ Experts: real maths codebases

Deep Inference for Graphical Theorem Proving

https://github.com/Champitoad/coq-actema


Iconic Manipulations



Bubble Calculi



The chemical metaphor

Item ⟺ Ion
Color ⟺ Polarity

Logical connective ⟺ Chemical bond
Click ⟺ Heating

Drag-and-Drop ⟺ Bimolecular reaction
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The chemical metaphor

Item ⟺ Ion
Color ⟺ Polarity

Logical connective ⟺ Chemical bond
Click ⟺ Heating

Drag-and-Drop ⟺ Bimolecular reaction

Breaks on rules that create subgoals (e.g. click on ∧)
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Bubbles

Natural way to depict context scoping

Two main inspirations:

• The chemical abstract machine
(Berry and Boudol 1989)

• Nested sequents
(Brünnler 2009)
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Example proof
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Example proof
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Polarized bubbles

𝐴 𝜎 → 𝐴 𝜎 𝐴 𝜎 → 𝐴 𝜎

𝐴 𝜎 → 𝐴 𝜎 𝐴 𝜎 → 𝐴 𝜎

Intuitionistic logic
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Polarized bubbles

𝐴 𝜎 → 𝐴 𝜎 𝐴 𝜎 → 𝐴 𝜎

𝐴 𝜎 → 𝐴 𝜎 𝐴 𝜎 → 𝐴 𝜎

Dual-intuitionistic logic
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Polarized bubbles

𝐴 𝜎 → 𝐴 𝜎 𝐴 𝜎 → 𝐴 𝜎

𝐴 𝜎 → 𝐴 𝜎 𝐴 𝜎 → 𝐴 𝜎

Bi-intuitionistic logic
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Polarized bubbles

𝐴 𝜎 → 𝐴 𝜎 𝐴 𝜎 → 𝐴 𝜎

𝐴 𝜎 → 𝐴 𝜎 𝐴 𝜎 → 𝐴 𝜎

Classical logic
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Polarized bubbles

𝐴 𝜎 → 𝐴 𝜎 𝐴 𝜎 → 𝐴 𝜎

𝐴 𝜎 → 𝐴 𝜎 𝐴 𝜎 → 𝐴 𝜎

Intuitionism = same polarities repel eachother
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Flower Calculus



Polarity meets Space

Bubble calculi are not fully iconic (need for symbolic connectives)
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Polarity meets Space

Bubble calculi are not fully iconic (need for symbolic connectives)

Key insight: space is polarized, not objects
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Existential Graphs (Peirce 1906)

• Diagrammatic proof system invented by C. S. Peirce around 1890

• Topological representation of negation as nested “cuts” (Jordan curves):

𝐴 𝐵 𝐴

𝐴 ∧ 𝐵 ¬𝐴
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Existential Graphs (Peirce 1906)

• Diagrammatic proof system invented by C. S. Peirce around 1890

• Topological representation of negation as nested “cuts” (Jordan curves):

𝐴 𝐵 𝐴

𝐴 ∧ 𝐵 ¬𝐴
⇛

𝐴 𝐵 𝐴 𝐵

𝐴 ∨ 𝐵 𝐴 ⇒ 𝐵
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Illative transformations

Inference rules on locations

𝑎 𝑎 𝑏
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Illative transformations

Inference rules on locations

𝑎 𝑎 𝑏 →→→→→→→→→→→→→→→→→→→→→→Deiteration 𝑎 𝑎 𝑏
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Illative transformations

Inference rules on locations

𝑎 𝑎 𝑏 →→→→→→→→→→→→→→→→→→→→→→Deiteration 𝑎 𝑎 𝑏 →→→→→→→→→→→→→→→→→→→→→Double-cut 𝑎 𝑏
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Illative transformations

Inference rules on locations

𝑎 𝑎 𝑏 →→→→→→→→→→→→→→→→→→→→→→Deiteration 𝑎 𝑎 𝑏 →→→→→→→→→→→→→→→→→→→→→Double-cut 𝑎 𝑏 →→→→→→→→→→→→→→→→Deletion 𝑏
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Intuitionistic Existential Graphs (Oostra 2011)

• Topological representation of implication with Peirce’s “scroll”

• Scroll = continuously joined nested cuts:

𝐵𝐴 𝐴 𝐵

𝐴 ∨ 𝐵 𝐴 ⇒ 𝐵

≠
𝐴 𝐵 𝐴 𝐵

¬(¬𝐴 ∧ ¬𝐵) ¬(𝐴 ∧ ¬𝐵)
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Blooming

𝑎

𝑏

𝑐

𝑑𝑒

𝑓
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Blooming

𝑎

𝑏

𝑐

𝑑𝑒

𝑓
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Blooming

𝑎

𝑏

𝑐

𝑑𝑒

𝑓

𝑏

𝑐

𝑑𝑒

𝑓
𝑎

Turn inloops into petals.
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Blooming

𝑎

𝑏

𝑐

𝑑𝑒

𝑓

𝑏

𝑐

𝑑𝑒

𝑓
𝑎

“Make love, not war"

Deep Inference for Graphical Theorem Proving

https://en.wikipedia.org/wiki/Make_love,_not_war


Pollination

Cross-pollination Self-pollination
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Flower Calculus (Donato 2024)

• Support for quantification with binders 𝑥⃗

• Interpretation as geometric formulas from topos theory

• Inference rules divided in two fragments:

‣ Nature ❀ = analytic and invertible
‣ Culture ✂ = non-invertible

Theorem (Analytic completeness) :  If a flower is valid (i.e.
true in every Kripke model), then it is ❀-provable.

𝑦1 Ψ1

𝑦2 Ψ2

𝑦3 Ψ3𝑦𝑖−1 Ψ𝑛−1

𝑦𝑛 Ψ𝑛
𝑥⃗ Φ

∀𝑥⃗.(⋀Φ ⇒⋁
𝑖
∃𝑦⃗𝑖.Ψ𝑖)

Deep Inference for Graphical Theorem Proving



Flower Prover (mascarpone cream)

GUI in the Proof-by-Action paradigm based on the flower calculus

• Represent flowers as nested boxes

• Modal interface to interpret gestural actions:

Proof mode ⟺ Natural (invertible and analytic) rules
Edit mode ⟺ Cultural (non-invertible) rules

Navigation mode ⟺ Contextual closure (functoriality)
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Thank you!
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