Deep Inference for Graphical Theorem Proving

Pablo Donato

2024-05-29

Institut Polytechnique de Paris, LIX, PARTOUT

PhD defense, Palaiseau

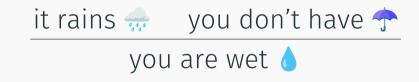
Supervised by Benjamin Werner & Pierre-Yves Strub

Introduction

Context

• Study of *sound* reasoning

- Study of sound reasoning
- Example of everyday life deduction:



- Study of *sound* reasoning
- Example of everyday life deduction:

premissesit rains
syou don't have
Tconclusionyou are wet
l

- Study of sound reasoning
- Example of everyday life deduction:

premisses	it rains 🜧	you don't have 🛧	you are outside
	you are not under a bus shelter		
conclusion	you are wet 💧		

- Study of sound reasoning
- Example of everyday life deduction:

premisses	it rains 🜧	you don't have 🛧	you are outside
· ·	you a	are not under a bus s	shelter
conclusion	you are wet 💧		

Hidden assumptions ⇒ lack of certainty

Socrates is human All humans are mortal Socrates is mortal

Socrates is human All humans are mortal Socrates is mortal

• Better! But *why* does it hold?

Socrates is human All humans are mortal Socrates is mortal

- Better! But *why* does it hold?
- Forget everything about *reality*:

 $\frac{x \text{ is } P \quad \text{All } P \text{ are } Q}{x \text{ is } Q}$

Socrates is human All humans are mortal Socrates is mortal

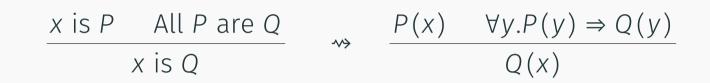
- Better! But *why* does it hold?
- Forget everything about *reality*:

 $\frac{x \text{ is } P \quad \text{All } P \text{ are } Q}{x \text{ is } Q}$

Service → Formal essence of logical reasoning

x is P All P are Q x is Q

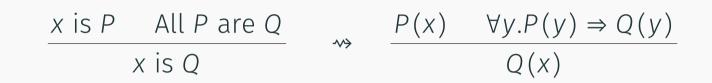
• Generic patterns of deduction as rules



- Generic patterns of deduction as **rules**
- Formalist school (Hilbert 20th century):

Maths as a huge **game**

Goal: to prove theorems by following inference rules



- Generic patterns of deduction as **rules**
- Formalist school (Hilbert 20th century):

Maths as a huge game

Goal: to prove theorems by following inference rules

• **Proof theory:** design & study of *rule systems* capturing maths

• Inference rules represented with **symbols**

- Inference rules represented with **symbols**
- **Computers** very good at *manipulating symbols* and *following rules*

- Inference rules represented with **symbols**
- **Computers** very good at *manipulating symbols* and *following rules*

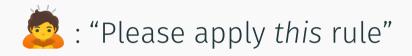
→ Teach computers how to do maths with proof theory!

- Inference rules represented with **symbols**
- **Computers** very good at *manipulating symbols* and *following rules*

→ Teach computers how to do maths with proof theory!

• Problem: maths is *hard* \Rightarrow need for a **human** in the loop

Contributions



1st contribution: build proofs by direct manipulation of *formulas*

- Show No need to *memorize* the rules
- Shore straightforward interaction

- Symbols are hard to:
 - *learn* ⇒ purely conventional meaning
 - manipulate ⇒ need for very precise gestures

- Symbols are hard to:
 - *learn* \Rightarrow purely conventional meaning
 - manipulate ⇒ need for very precise gestures
- Formulas can **interact** by being *moved* in the same space

- Symbols are hard to:
 - *learn* ⇒ purely conventional meaning
 - manipulate ⇒ need for very precise gestures
- Formulas can **interact** by being *moved* in the same space

2nd contribution: replace logical symbols by **geometrical diagrams**

Symbolic Manipulations

Proof-by-Action

A *demo* is worth a thousand words!

• Fully graphical: no textual proof language

Paradigm

- Fully graphical: no textual proof language
- Both spatial and temporal:

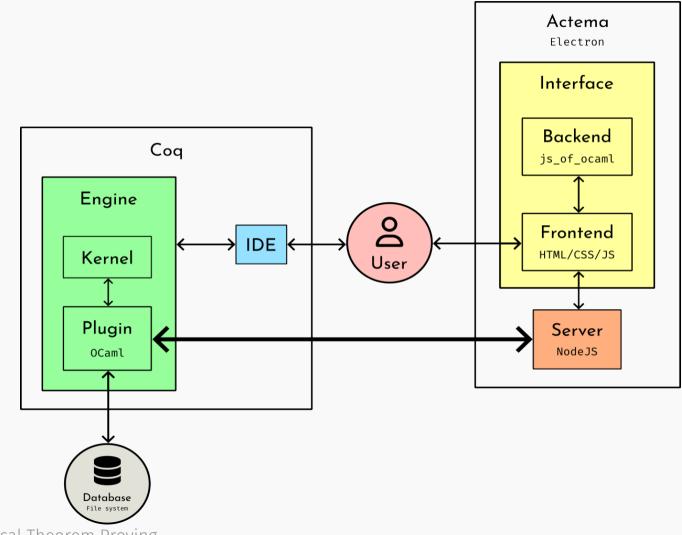
- Fully graphical: no textual proof language
- Both spatial and temporal:

proof = gesture sequence

• **Different modes** of reasoning with a **single "syntax"**:

Click ↔ introduction/elimination Drag-and-Drop ↔ backward/forward

(Bouverot, Donato, Najjar, Strub, Werner)



coq-actema

Semantics of Drag-and-Drop

 $\underline{A} \land \underline{B} \otimes B \land (\underline{A} \lor C) \land D$

$$\begin{cases} \underline{A} \land B \otimes B \land (\underline{A} \lor C) \land D \\ \rightarrow B \land (\underline{A} \land B \otimes (\underline{A} \lor C) \land D) \\ \rightarrow B \land (\underline{A} \land B \otimes (\underline{A} \lor C) \land D) \\ \rightarrow B \land (\underline{A} \land B \otimes \underline{A} \lor C) \land D \\ \rightarrow B \land ((\underline{A} \land B \otimes \underline{A}) \lor C) \land D \\ \rightarrow B \land ((B \Rightarrow \underline{A} \otimes A) \lor C) \land D \end{cases}$$

$$\begin{cases} \underline{A} \land B \otimes B \land (\underline{A} \lor C) \land D \\ \rightarrow B \land (\underline{A} \land B \otimes (\underline{A} \lor C) \land D) \\ \rightarrow B \land (\underline{A} \land B \otimes (\underline{A} \lor C) \land D) \\ \rightarrow B \land (\underline{A} \land B \otimes \underline{A} \lor C) \land D \\ \rightarrow B \land ((\underline{A} \land B \otimes \underline{A}) \lor C) \land D \\ \rightarrow B \land ((B \Rightarrow \underline{A} \otimes A) \lor C) \land D \\ \rightarrow B \land ((B \Rightarrow \underline{A} \otimes A) \lor C) \land D \end{cases}$$

$$identity \{ \rightarrow B \land ((B \Rightarrow T) \lor C) \land D \}$$

$$\begin{cases}
\underline{A} \land B \otimes B \land (\underline{A} \lor C) \land D \\
\Rightarrow B \land (\underline{A} \land B \otimes (\underline{A} \lor C) \land D) \\
\Rightarrow B \land (\underline{A} \land B \otimes \underline{A} \lor C) \land D \\
\Rightarrow B \land ((\underline{A} \land B \otimes \underline{A}) \lor C) \land D \\
\Rightarrow B \land ((B \Rightarrow \underline{A}) \lor C) \land D \\
\Rightarrow B \land ((B \Rightarrow \underline{A} \otimes A) \lor C) \land D \\
\end{cases}$$
identity $\{ \rightarrow B \land ((B \Rightarrow T) \lor C) \land D \\
\Rightarrow B \land (T \lor C) \land D \\
\Rightarrow B \land T \land D \\
\Rightarrow B \land D
\end{cases}$

$$\begin{cases} \underline{A} \land B \otimes B \land (\underline{A} \lor C) \land D \\ \rightarrow B \land (\underline{A} \land B \otimes (\underline{A} \lor C) \land D) \\ \rightarrow B \land (\underline{A} \land B \otimes \underline{A} \lor C) \land D \\ \rightarrow B \land ((\underline{A} \land B \otimes \underline{A}) \lor C) \land D \\ \rightarrow B \land ((\underline{A} \land B \otimes \underline{A}) \lor C) \land D \\ \rightarrow B \land ((B \Rightarrow \underline{A} \otimes A) \lor C) \land D \\ identity \left\{ \rightarrow B \land ((B \Rightarrow T) \lor C) \land D \\ \rightarrow B \land (T \lor C) \land D \\ \rightarrow B \land T \land D \\ \rightarrow B \land D \end{cases}$$

Variant of the **Calculus of Structures** (Guglielmi 1999)

(Donato, Strub, and Werner 2022)

 $\exists y. \forall x.R(x, y) \otimes \forall a. \exists b.R(a, b)$

(Donato, Strub, and Werner 2022)

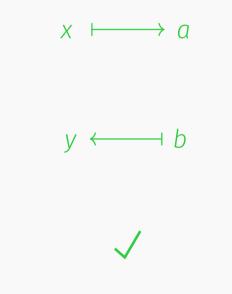
• Unify linked subformulas

$\exists y. \forall x. R(x, y) \otimes \forall a. \exists b. R(a, b)$

(Donato, Strub, and Werner 2022)

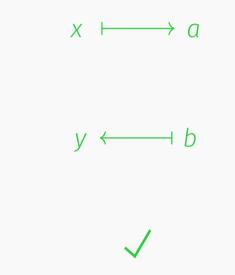
- Unify linked subformulas
- Check for ∀∃ dependency cycles

 $\exists y. \forall x. R(x, y) \otimes \forall a. \exists b. R(a, b)$



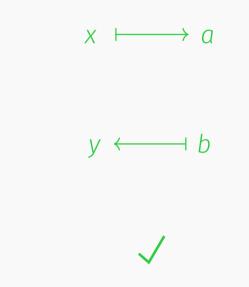
- Unify linked subformulas
- Check for ∀∃ dependency cycles
- Switch uninstantiated quantifiers

 $\exists y. \forall x. R(x, y) \otimes \forall a. \exists b. R(a, b)$ $\rightarrow \forall y. (\forall x. R(x, y) \otimes \forall a. \exists b. R(a, b))$ $\rightarrow \forall y. \forall a. (\forall x. R(x, y) \otimes \exists b. R(a, b))$



- Unify linked subformulas
- Check for ∀∃ dependency cycles
- **Switch** uninstantiated quantifiers
- Instantiate unified variables

 $\exists y. \forall x. R(x, y) \otimes \forall a. \exists b. R(a, b)$ $\rightarrow \forall y. (\forall x. R(x, y) \otimes \forall a. \exists b. R(a, b))$ $\rightarrow \forall y. \forall a. (\forall x. R(x, y) \otimes \exists b. R(a, b))$ $\rightarrow \forall y. \forall a. (\forall x. R(x, y) \otimes R(a, y))$ $\rightarrow \forall y. \forall a. (R(a, y) \otimes R(a, y))$ $\rightarrow^* \top$



(Donato, Strub, and Werner 2022)

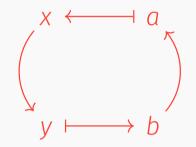
• Unify linked subformulas

x ← a

$\forall a. \exists b. R(a, b) \otimes \exists y. \forall x. R(x, y)$

(Donato, Strub, and Werner 2022)

- Unify linked subformulas
- Check for ∀∃ dependency cycles



Add 4 rules \implies rewrite tactic for free!

$\underline{t} = u \bigotimes A$	\rightarrow	A[u/t]	t = <u>u</u> ⊗ A	\rightarrow	A[t/u]
<u>t</u> = u ⊛ A	\rightarrow	A[u/t]	t = <u>u</u> ⊛ A	\rightarrow	A[t/u]

Add 4 rules \implies rewrite tactic for free!

 $\underline{t} = u \otimes A \rightarrow A[u/t] \qquad t = \underline{u} \otimes A \rightarrow A[t/u]$ $\underline{t} = u \otimes A \rightarrow A[u/t] \qquad t = \underline{u} \otimes A \rightarrow A[t/u]$

Compositional with semantics of **connectives**:

- Quantifiers: rewrite modulo *unification*
- Implication: conditional rewrite
- Arbitrary combinations are possible:

$$\forall x.x \neq 0 \Rightarrow \underline{f(x)} = g(x) \otimes \exists y.A(\underline{f(y)}) \lor B(y)$$
$$\rightarrow^* \exists y.(y \neq 0 \land A(g(y))) \lor B(y)$$

Add the following rules:

- Init $C^+ A \Rightarrow B \rightarrow C^+ A \otimes B$ $C^- A \wedge B \rightarrow C^- A \circledast B$
- Release $C^+ \land \otimes B \to C^+ \land A \Rightarrow B$ $C^- \land \otimes B \to C^- \land \land B$
- Contraction $C^- A \rightarrow C^- A \land A$

Theorem (Completeness): If $\Gamma \vdash A$ is provable in sequent calculus, then

 $\bigwedge \Gamma \Rightarrow A \to^* \mathsf{T}$

- coq-actema still in development, but already usable

 → follow install instructions on <u>GitHub</u>!
- Based on the solid proof theory of **subformula linking**
- Next step: exposure to real users
 - **Beginners/students:** introductory logic/proof assistants course
 - Experts: real maths codebases

Iconic Manipulations

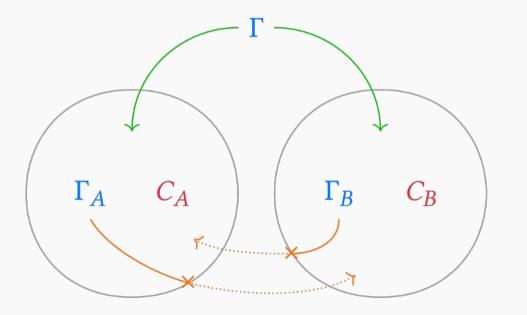
Bubble Calculi

Item ↔ Ion Color ↔ Polarity Logical connective ↔ Chemical bond Click ↔ Heating Drag-and-Drop ↔ Bimolecular reaction

Item ↔ Ion Color ↔ Polarity Logical connective ↔ Chemical bond Click ↔ Heating Drag-and-Drop ↔ Bimolecular reaction

Breaks on rules that create subgoals (e.g. click on \wedge)

Natural way to depict context scoping

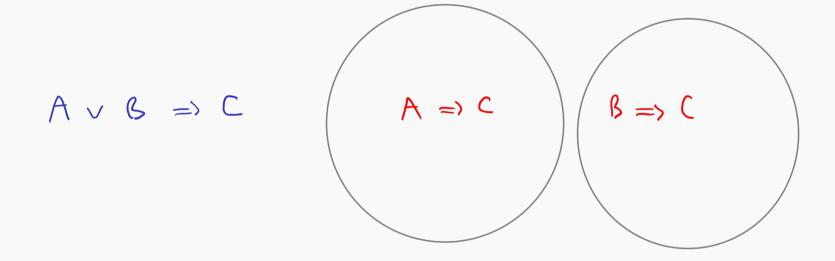


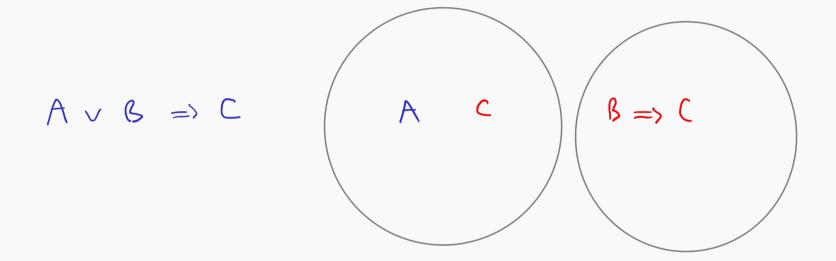
Two main inspirations:

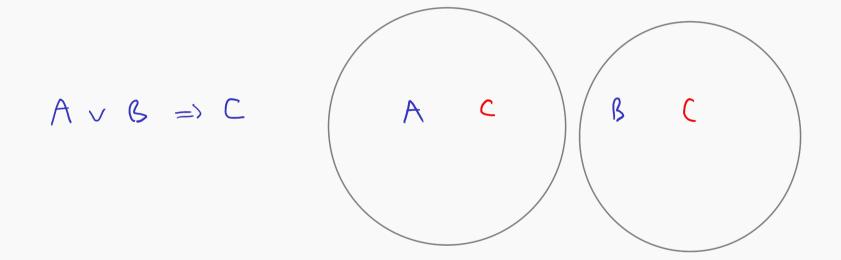
- The chemical abstract machine (Berry and Boudol 1989)
- Nested sequents (Brünnler 2009)

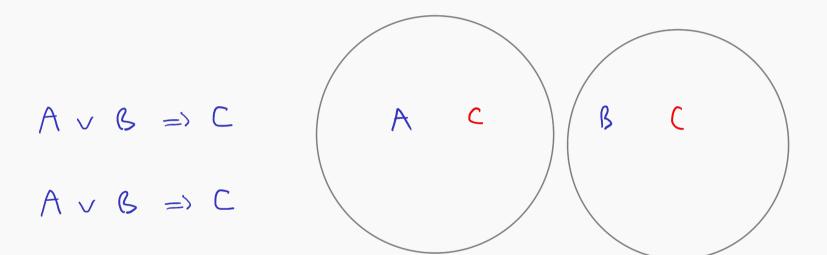
$$(A \lor B \Rightarrow C) \Rightarrow (A \Rightarrow C) \land (B \Rightarrow C)$$

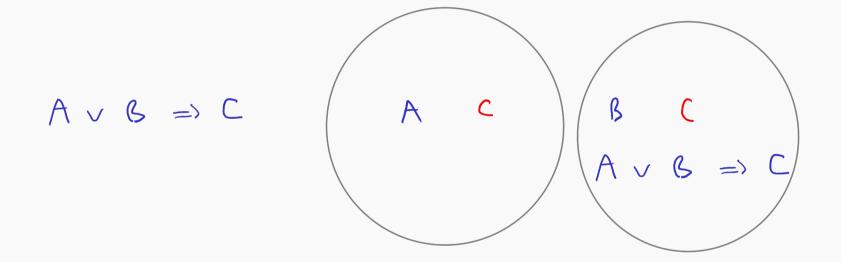
$A \lor B \Rightarrow C$ $(A \Rightarrow C) \land (B \Rightarrow C)$

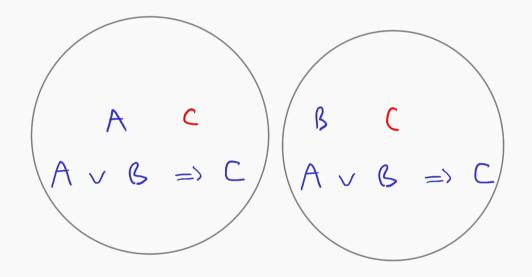


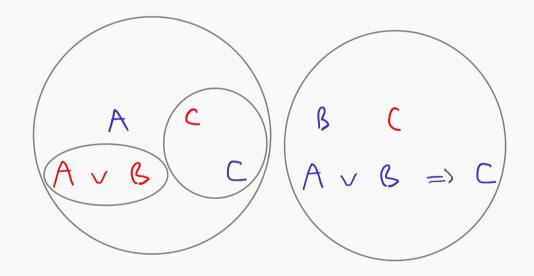


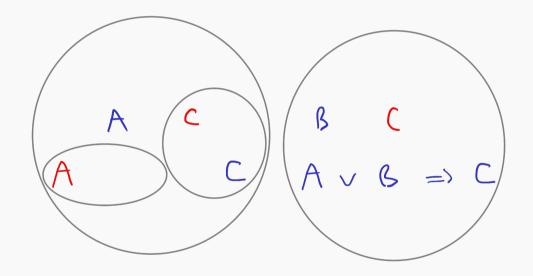


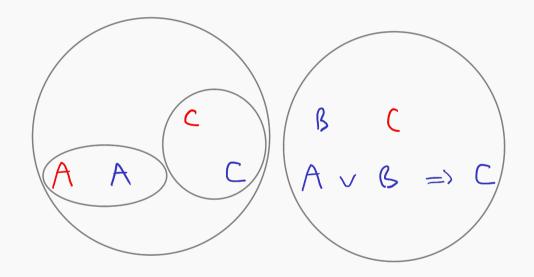


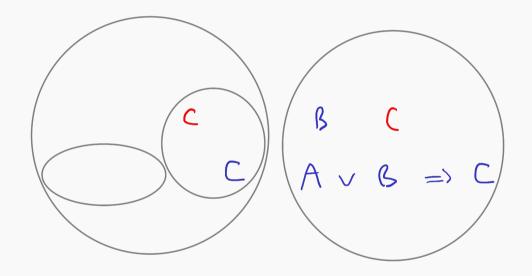


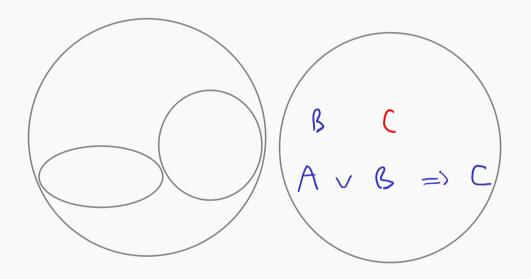


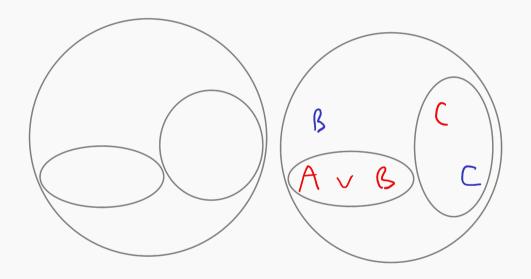


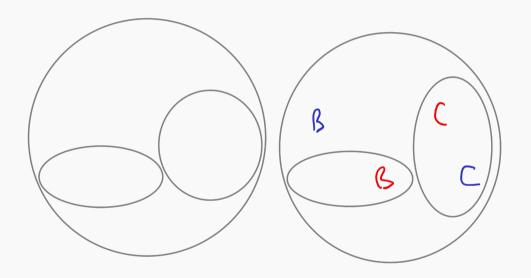


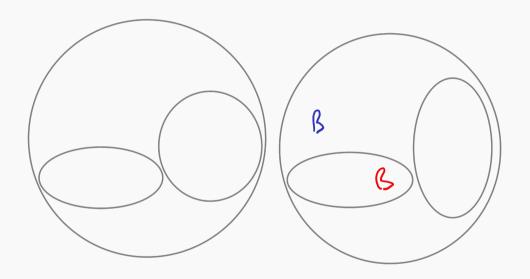


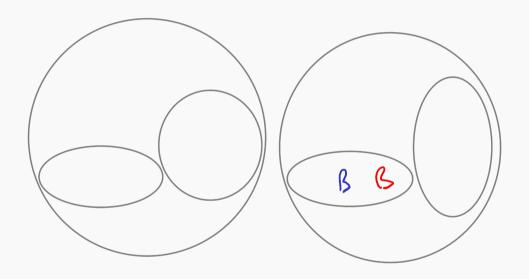


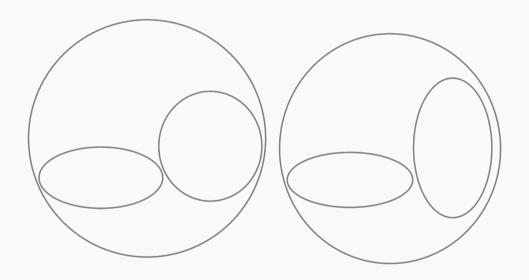


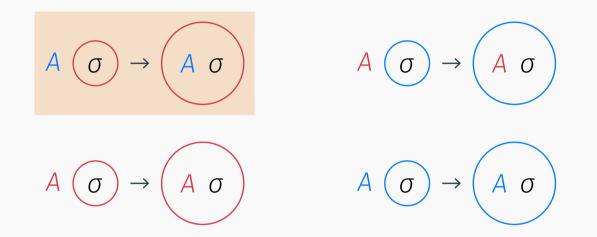




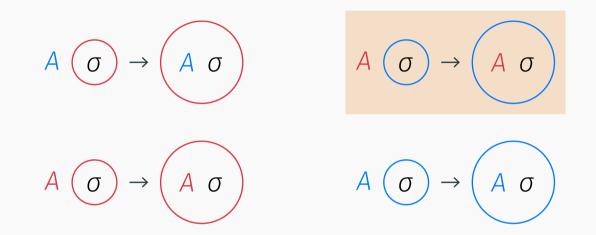




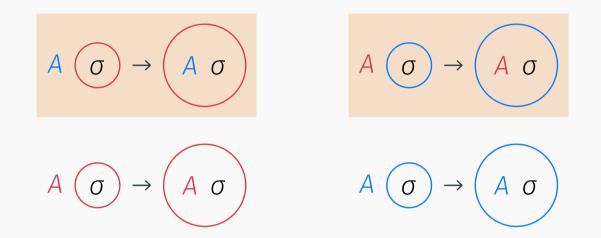




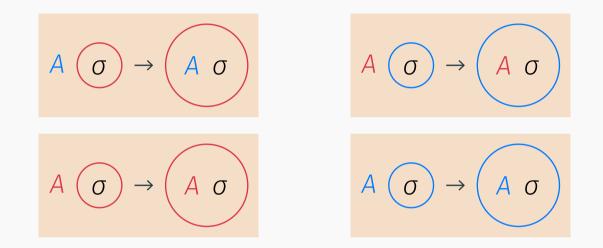
Intuitionistic logic



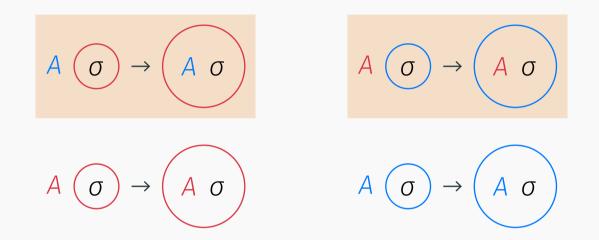
Dual-intuitionistic logic



Bi-intuitionistic logic



Classical logic



Intuitionism = same polarities repel eachother

Flower Calculus

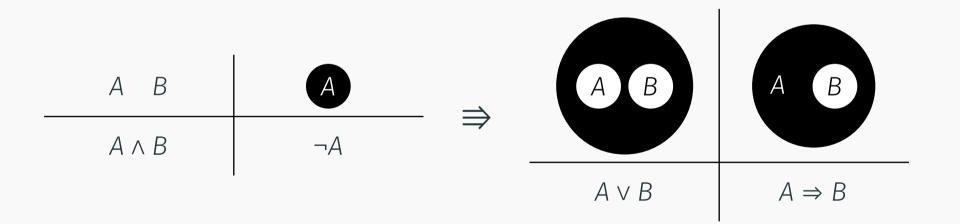
Bubble calculi are not **fully iconic** (need for *symbolic* connectives)

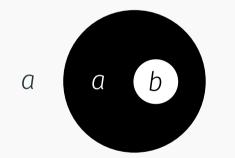
Bubble calculi are not **fully iconic** (need for symbolic connectives)

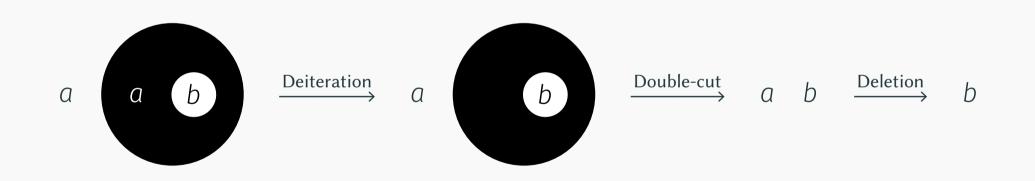
Key insight: **space** is *polarized*, not **objects**

- **Diagrammatic** proof system invented by C. S. Peirce around 1890
- Topological representation of **negation** as nested "*cuts*" (Jordan curves):

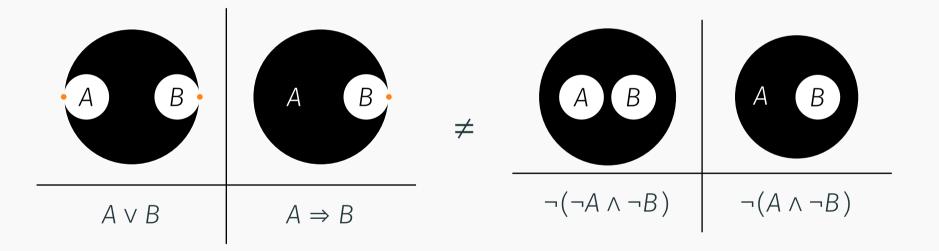
- **Diagrammatic** proof system invented by C. S. Peirce around 1890
- Topological representation of **negation** as nested "*cuts*" (Jordan curves):



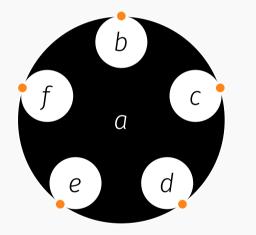


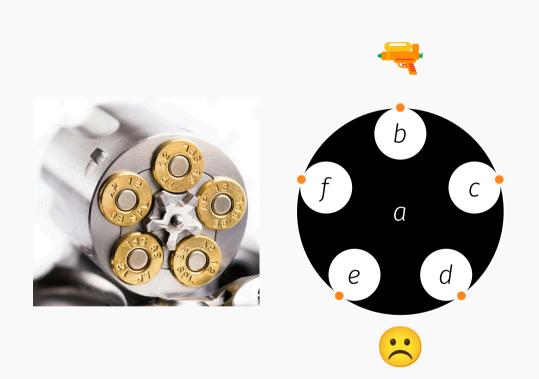


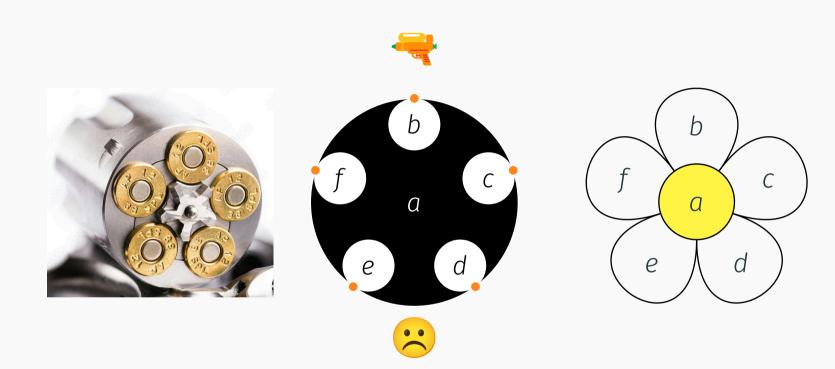
- Topological representation of **implication** with Peirce's "scroll"
- Scroll = continuously joined nested cuts:



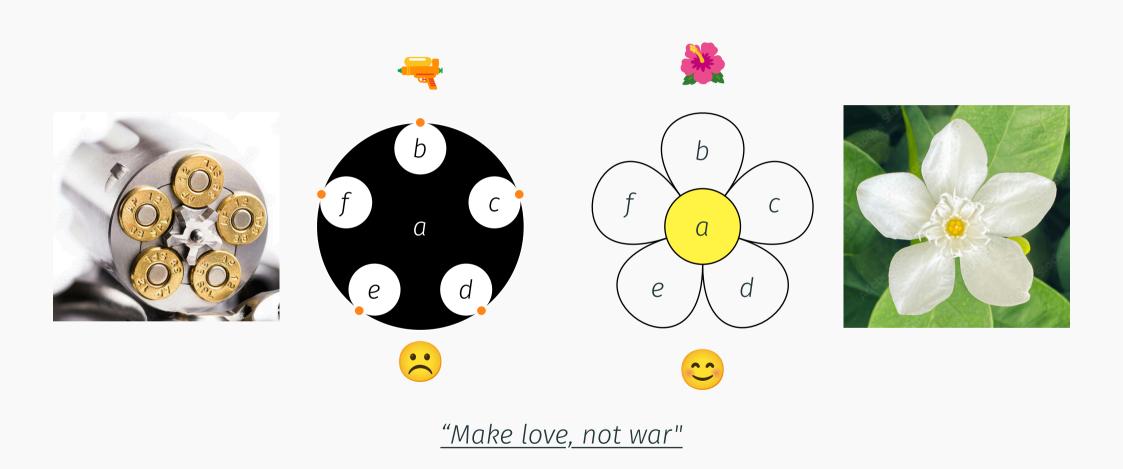
(Oostra 2011)

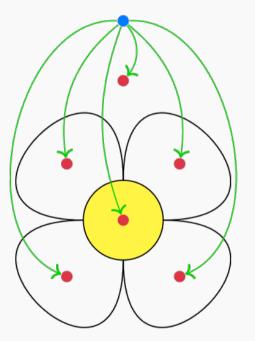




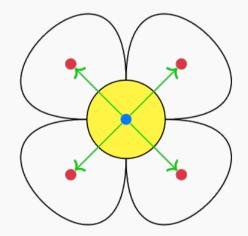


Turn **inloops** into **petals**.





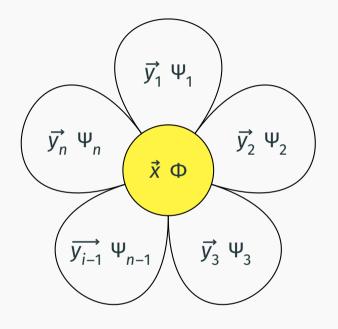
Cross-pollination



Self-pollination

- Support for **quantification** with *binders* \vec{x}
- Interpretation as geometric formulas from topos theory
- Inference rules divided in two fragments:
 - Nature Se = analytic and invertible
 - Culture >> = non-invertible

Theorem (Analytic completeness): If a flower is *valid* (i.e. true in every Kripke model), then it is $\ensuremath{\mathscr{R}}$ -provable.



/ ∃_{y_i.Ψ_i)} $\Phi \Rightarrow$ $\forall \vec{x}$

GUI in the Proof-by-Action paradigm based on the flower calculus

- Represent flowers as nested **boxes**
- Modal interface to interpret gestural actions:

Proof mode ↔ Natural (invertible and analytic) rules Edit mode ↔ Cultural (non-invertible) rules Navigation mode ↔ Contextual closure (functoriality) Thank you!

Bibliography

Berry, Gerard, and Gerard Boudol. 1989. "The Chemical Abstract Machine". In Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 81–94. POPL '90. New York, NY, USA: Association for Computing Machinery. https://doi.org/<u>10.1145/96709.96717</u>

Brünnler, Kai. 2009. "Deep Sequent Systems for Modal Logic". Archive for Mathematical Logic 48 (6): 551–77. https://doi.org/10.1007/s00153-009-0137-3

Chaudhuri, Kaustuv. 2013. "Subformula Linking as an Interaction Method". Edited by Sandrine Blazy, Christine Paulin-Mohring, David Pichardie, David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, et al.. *Interactive Theorem Proving*. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/<u>10.1007/978-3-642-39634-2_</u> <u>28</u>

Donato, Pablo. 2024. "The Flower Calculus". <u>https://hal.science/hal-04472717/</u>

Donato, Pablo, Pierre-Yves Strub, and Benjamin Werner. 2022. "A Drag-and-Drop Proof Tactic". In *Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs*, 197–209. CPP 2022. Philadelphia, PA, USA: Association for Computing Machinery. https://doi.org/<u>10.1145/3497775.3503692</u>

Guglielmi, Alessio. 1999. "A Calculus of Order and Interaction". <u>https://www.</u> <u>researchgate.net/publication/2807151_A_Calculus_of_Order_and_Interaction</u>

Oostra, Arnold. 2011. *Gráficos Existenciales Beta Intuicionistas*. Cuadernos De Sistemática Peirceana. Centro de Sistemática Peirceana

Peirce, Charles Sanders. 1906. "Prolegomena to an Apology for Pragmaticism". *The Monist* 16 (4): 492–546. <u>https://www.jstor.org/stable/27899680</u>