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• Goal: intuitive GUI for interactive theorem provers
• Methodology:

Direct manipulation⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Proofs

of Flowers 🌺⏟
Statements

• (Peirce, 1896): existential graphs (EGs) for classical logic
• (Oostra 2010; Ma and Pietarinen 2019): EGs for intuitionistic logic

⤷ Flower calculus: intuitionistic variant that is analytic

Disclaimer: no category theory in this talk!
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Outline of this talk

1. Classical Logic: Existential Graphs

2. Intuitionistic Logic: Flowers

3. Reasoning with Flowers

4. Metatheory: Nature vs. Culture

5. The Flower Prover
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The three icons of Alpha

• Sheet of assertion

𝑎 ↦ 𝑎 is true
↦ ⊤ (no assertion)

• Juxtaposition

𝐺 𝐻 ↦ 𝐺 and 𝐻 are true

• Cut

𝐺 ↦ 𝐺 is not true
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Relationship with formulas

𝐴 𝐵 𝐴 𝐵

⊥ 𝐴 ∨ 𝐵 𝐴 ⇒ 𝐵
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Illative transformations

Only 4 edition principles!

Iteration (copy-paste) Deiteration (unpaste) Insertion Deletion

𝐺 𝐻 𝐺 → 𝐺 𝐻 𝐺

𝐺 𝐻 𝐺 → 𝐺 𝐻 𝐺

𝐺 𝐻 𝐺 → 𝐺 𝐻 𝐺

𝐺 𝐻 𝐺 → 𝐺 𝐻 𝐺
→ 𝐺 𝐺 →

and a space principle, the Double-cut law:

𝐺 ↔ 𝐺 𝐺 ↔ 𝐺
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Example: modus ponens

𝑎 𝑎 𝑏 →→→→→→→→Deit 𝑎 𝑎 𝑏 →→→→→→→→→Dcut 𝑎 𝑏 →→→→→→→Del 𝑏
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Intuitionistic Logic: Flowers



The scroll

I thought I ought to take the general form of argument as the
basal form of composition of signs in my diagrammatization;
and this necessarily took the form of a “scroll”, that is […] a
curved line without contrary flexure and returning into itself af-
ter once crossing itself.

— (Peirce 1906, pp. 533-534)
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The scroll

𝐴 ∧ 𝐵 ⇒ 𝐶 ∧ 𝐷

𝐴 𝐵

𝐶 𝐷

I thought I ought to take the general form of argument as the
basal form of composition of signs in my diagrammatization;
and this necessarily took the form of a “scroll”, that is […] a
curved line without contrary flexure and returning into itself af-
ter once crossing itself.

— (Peirce 1906, pp. 533-534)

• “conditional de inesse” = classical implication

⤷ scroll = two nested cuts

• Peirce also introduced ⇒ in logic!  (Lewis 1920, p. 79)
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𝑎

𝑏
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The 𝑛-ary scroll (Oostra 2010)

Classical

𝑏 𝑐
𝑎

𝑏

𝑐

𝑑𝑒

𝑓

Classical

𝑎 𝑏

𝑏 ∨ 𝑐 𝑎 ⇒ 𝑏 ∨ 𝑐 ∨ 𝑑 ∨ 𝑒 ∨ 𝑓 𝑎 ⇒ 𝑏

𝑛 = 5
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The 𝑛-ary scroll (Oostra 2010)

Continuity!

≠
Intuitionistic

𝑏 𝑐
𝑐𝑏

Classical

𝑎 𝑏

¬(¬𝑏 ∧ ¬𝑐) 𝑏 ∨ 𝑐 𝑎 ⇒ 𝑏

𝑛 = 2
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The 𝑛-ary scroll (Oostra 2010)

Continuity! Generalizes Peirce’s scroll

≠
Intuitionistic

𝑏 𝑐
𝑎 𝑏

Intuitionistic

𝑎 𝑏

¬(¬𝑏 ∧ ¬𝑐) 𝑎 ⇒ 𝑏 ¬(𝑎 ∧ ¬𝑏)

𝑛 = 1
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The 𝑛-ary scroll (Oostra 2010)

Continuity! Generalizes Peirce’s scroll and cut

Intuitionistic

𝑏 𝑐
𝑎

Intuitionistic

𝑎 𝑏

¬(¬𝑏 ∧ ¬𝑐) ¬𝑎 ≜ 𝑎 ⇒⊥ ¬(𝑎 ∧ ¬𝑏)

𝑛 = 0
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Blooming (Me, 2022)

𝑎

𝑏

𝑐

𝑑𝑒

𝑓
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𝑏

𝑐
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𝑓

☹

𝑏

𝑐

𝑑𝑒

𝑓
𝑎

Turn inloops into petals.
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Blooming (Me, 2022)

🔫

𝑎

𝑏

𝑐

𝑑𝑒

𝑓

☹

🌺

𝑏

𝑐

𝑑𝑒

𝑓
𝑎

😊
“Make love, not war"
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Corollaries

The original “theorems” of geometry were those propositions that Euclid proved,
while the corollaries were simple deductions from the theorems inserted by Eu-
clid’s commentators and editors. They are said to have been marked the figure of
a little garland (or corolla), in the origin.

— Peirce, MS 514 (1909)   (Peirce 1976)
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The original “theorems” of geometry were those propositions that Euclid proved,
while the corollaries were simple deductions from the theorems inserted by Eu-
clid’s commentators and editors. They are said to have been marked the figure of
a little garland (or corolla), in the origin.

— Peirce, MS 514 (1909)   (Peirce 1976)

Petals = (possible) corolla-ries of pistil!
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Gardens

∃/∀ = binder in petal/pistil

𝑥
𝑃(𝑥) 𝑄(𝑥) 𝑆(𝑥)

𝑥
𝑅(𝑥)

∃𝑥.𝑃(𝑥) ∧ 𝑄(𝑥) ∀𝑥.𝑅(𝑥) ⇒ 𝑆(𝑥)

garden = content of an area (binders + flowers)

15/34



Reasoning with Flowers



Iteration and Deiteration

Justify a target flower by a source flower

cross-pollination self-pollination
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Iteration and Deiteration

Works at arbitrary depth!
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𝑎

𝑏

Cross-pollination
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𝑏
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Insertion and Deletion

Split in two:

Flower Petal

→→→→→→→→→→grow 𝑏
𝑐

𝑑𝑒

𝑓 𝑎

𝑏
𝑐

𝑑𝑒

𝑓 𝑎 →→→→→→→→→crop

𝑐

𝑑𝑒

𝑓 𝑎 →→→→→→→→glue
𝑏

𝑐

𝑑𝑒

𝑓 𝑎

𝑏
𝑐

𝑑𝑒

𝑓 𝑎 →→→→→→→→pull 𝑐

𝑑𝑒

𝑓 𝑎

Backward reading:     conclusion →→→→→→→→→ premiss
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Scrolling

Intuitionistic restriction of double-cut principle:

𝑎 →→→→→→→→epis 𝑎
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Instantiation

𝑏(𝑥)

𝑐(𝑥)

𝑑(𝑥)𝑒(𝑥)

𝑓(𝑥)
𝑥 𝑎(𝑥) →→→→→→→ipis

𝑏(𝑡)

𝑐(𝑡)

𝑑(𝑡)𝑒(𝑡)

𝑓(𝑡)
𝑎(𝑡)

𝑏(𝑥)

𝑐(𝑥)

𝑑(𝑥)𝑒(𝑥)

𝑓(𝑥)
𝑥 𝑎(𝑥)

𝑥 𝑏(𝑥)

𝑐

𝑑𝑒

𝑓
𝑎 →→→→→→→ipet

𝑏(𝑡) 𝑥 𝑏(𝑥)

𝑐

𝑑𝑒

𝑓 𝑎
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Abstraction

𝑏(𝑡)

𝑐(𝑡)

𝑑(𝑡)𝑒(𝑡)

𝑓(𝑡)
𝑎(𝑡) →→→→→→→→apis

𝑏(𝑥)

𝑐(𝑥)

𝑑(𝑥)𝑒(𝑥)

𝑓(𝑥)
𝑥 𝑎(𝑥)

𝑏(𝑡)

𝑐

𝑑𝑒

𝑓
𝑎 →→→→→→→→apet

𝑥 𝑏(𝑥)

𝑐

𝑑𝑒

𝑓
𝑎
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Case reasoning

→→→→→→→→srep
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Ex falso quodlibet

→→→→→→→→srep
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QED

𝑐

𝑑𝑒

𝑓
𝑎 →→→→→→→→epet
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Metatheory: Nature vs. Culture



Natural rules ✿

✿ = (De)iteration⏟
{poll↓,poll↑}

∪ Instantiation⏟
{ipis,ipet}

∪ Scrolling⏟
{epis}

∪ QED⏟
{epet}

∪ Case reasoning⏟⏟⏟⏟⏟
{srep}
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Natural rules ✿

✿ = (De)iteration⏟
{poll↓,poll↑}

∪ Instantiation⏟
{ipis,ipet}

∪ Scrolling⏟
{epis}

∪ QED⏟
{epet}

∪ Case reasoning⏟⏟⏟⏟⏟
{srep}

Let Φ, Ψ be bouquets, i.e. multisets of flowers.

All rules are:

• Invertible: if Φ ⟶ Ψ then Ψ equivalent to Φ

⤷ “Equational” reasoning

• Analytic: if Φ ⟶ Ψ and 𝑎 occurs in Ψ then 𝑎 occurs in Φ

⤷ Reduces proof-search space
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Cultural rules ✂

✂ = Insertion⏟
{grow,glue}

∪ Deletion⏟
{crop,pull}

∪ Abstraction⏟
{apis,apet}
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Cultural rules ✂

✂ = Insertion⏟
{grow,glue}

∪ Deletion⏟
{crop,pull}

∪ Abstraction⏟
{apis,apet}

• All rules are non-invertible

• Some rules are non-analytic
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Hypothetical provability

• Remember our paradigm:

proving = erasing
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Hypothetical provability

• Remember our paradigm:

proving = erasing

• This works in arbitrary contexts 𝑋 (i.e. one-holed bouquets)

• Formally:

Definition :  For any bouquets Φ and Ψ, Ψ is provable from Φ, written Φ ⊢ Ψ, if for
any context 𝑋 in which Φ occurs and pollinates the hole of 𝑋, we have

𝑋 Ψ ⟶ 𝑋 Φ
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Cult-elimination

Theorem (Soundness) :  If Φ ⟶ Ψ then Ψ ⊨
𝒦

Φ in every Kripke structure 𝒦.
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Cult-elimination

Completeness of analytic fragment ✿!
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The Flower Prover



A demo is worth a thousand pictures!

http://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover


Related works (non-exhaustive)

• Structural proof theory:
‣ (Guenot 2013): rewriting-based nested sequent

calculi
‣ (Lyon 2021; Girlando et al. 2023): fully invertible

labelled sequent calculi

• Proof assistants:
‣ (Ayers 2021): Box datastructure similar to flowers

• Categorical logic:
‣ (Johnstone 2002): coherent/geometric formulas

in topos theory
‣ (Bonchi et al. 2024): algebra of Beta   (previous talk!)

⃗𝑦1 Ψ1

⃗𝑦2 Ψ2

⃗𝑦3 Ψ3𝑦𝑖−1 Ψ𝑛−1

𝑦𝑛 Ψ𝑛
⃗𝑥 Φ

∀ ⃗𝑥.(⋀Φ ⇒⋁
𝑖

∃ ⃗𝑦𝑖.Ψ𝑖)
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